模型评估方法以及评估指标——准确率、精确率、召回率以及P-R曲线和ROC曲线介绍

本文详细介绍了模型评估中的准确率、精确率、召回率,并探讨了P-R曲线和ROC曲线在评估模型性能时的作用,强调了在样本分布不均时,单纯依靠准确率可能产生误导,而P-R和ROC曲线能提供更全面的评估。此外,还讨论了Holdout检验、交叉检验和自助法等模型验证方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

”没有测量,就没有科学“

在机器学习中,只有选择与问题相匹配的评估方法,才能快速地发现模型选择或训练过程中出现的问题,迭代地对模型进行优化。模型评估主要是离线评估和在线评估两个阶段,本文整理了常见的模型评估方法以及一些模型评估指标的介绍,以供学习查阅。

一、准确率、精确率、召回率

准确率、精确率、召回率是评估模型中常见的三个指标,以下表为例,我们来对这三个指标进行介绍

y\y_pred 预测为合格(0) 预测为不合格(1) 合计
合格(0) 182(True Positive) 18(False Negatice) 200
不合格(1) 26(False Positive) 174(True Negative) 200
合计 208 192 400

上表中显示了模型对产品进行是否合格的预测结果,产品共400件。

1.1 准确率(Accuracy)

准确率是指分类正确的样本占总样本个数的比例,即 A c c u r a c y = n c o r r e c t / n t o t a l Accuracy = n_{correct}/n_{total} Accuracy=ncorrect/ntotal
其中 n c o r r e c t n_{correct} ncorrect为被正确分类的样本个数, n t o t a l n_{total} ntotal为总样本的个数。以上表为例,则预测产品是否合格的模型的准确率为 a c c = ( 182 + 174 ) / 400 ∗ 100 % = 89.0 % acc=(182+174)/400*100\% = 89.0\% acc=(182+174)/400

分类模型精确召回率评估分类模型性能的两个重要指标精确是指预测为正样本的样本中真实为正样本的比例,而召回率是指真实为正样本的样本中被正确预测为正样本的比例。 简单来说,精确衡量了模型预测为正样本的准确程度,即当模型预测为正样本时,有多少是正确的;召回率则衡量了模型对正样本的查全能力,即有多少真实的正样本被正确预测出来了。 具体计算公式如下: 精确 = TP / (TP + FP) 召回率 = TP / (TP + FN) 其中,TP表示真正例(真实为正样本且被正确预测为正样本),FP表示假正例(真实为负样本但被错误预测为正样本),FN表示假负例(真实为正样本但被错误预测为负样本)。 精确召回率之间存在一个权衡关系,当我们希望模型对正样本的预测更准确时,可以提高阈值,从而增加模型精确;当我们希望模型对正样本的预测更全面时,可以降低阈值,从而提高模型召回率。 总之,精确召回率评估分类模型性能的重要指标,可以帮助我们全面了解模型的预测准确程度查全能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [机器学习学习记录【持续更新】——分类](https://download.csdn.net/download/weixin_38657835/14885360)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [机器学习:分类模型评估指标准确率、精准召回率、F1、ROC曲线、AUC曲线)](https://blog.csdn.net/Vermont_/article/details/108625669)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值