模型评估方法以及评估指标——准确率、精确率、召回率以及P-R曲线和ROC曲线介绍

本文详细介绍了模型评估中的准确率、精确率、召回率,并探讨了P-R曲线和ROC曲线在评估模型性能时的作用,强调了在样本分布不均时,单纯依靠准确率可能产生误导,而P-R和ROC曲线能提供更全面的评估。此外,还讨论了Holdout检验、交叉检验和自助法等模型验证方法。
摘要由CSDN通过智能技术生成


前言

”没有测量,就没有科学“

在机器学习中,只有选择与问题相匹配的评估方法,才能快速地发现模型选择或训练过程中出现的问题,迭代地对模型进行优化。模型评估主要是离线评估和在线评估两个阶段,本文整理了常见的模型评估方法以及一些模型评估指标的介绍,以供学习查阅。

一、准确率、精确率、召回率

准确率、精确率、召回率是评估模型中常见的三个指标,以下表为例,我们来对这三个指标进行介绍

y\y_pred 预测为合格(0) 预测为不合格(1) 合计
合格(0) 182(True Positive) 18(False Negatice) 200
不合格(1) 26(False Positive) 174(True Negative) 200
合计 208 192 400

上表中显示了模型对产品进行是否合格的预测结果,产品共400件。

1.1 准确率(Accuracy)

准确率是指分类正确的样本占总样本个数的比例,即 A c c u r a c y = n c o r r e c t / n t o t a l Accuracy = n_{correct}/n_{total} Accuracy=ncorrect/ntotal
其中 n c o r r e c t n_{correct} ncorrect为被正确分类的样本个数, n t o t a l n_{total} ntotal为总样本的个数。以上表为例,则预测产品是否合格的模型的准确率为 a c c = ( 182 + 174 ) / 400 ∗ 100 % = 89.0 % acc=(182+174)/400*100\% = 89.0\% acc=(182+174)/400

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值