模型评估方法以及评估指标——准确率、精确率、召回率以及P-R曲线和ROC曲线介绍
前言
在机器学习中,只有选择与问题相匹配的评估方法,才能快速地发现模型选择或训练过程中出现的问题,迭代地对模型进行优化。模型评估主要是离线评估和在线评估两个阶段,本文整理了常见的模型评估方法以及一些模型评估指标的介绍,以供学习查阅。”没有测量,就没有科学“
一、准确率、精确率、召回率
准确率、精确率、召回率是评估模型中常见的三个指标,以下表为例,我们来对这三个指标进行介绍
y\y_pred | 预测为合格(0) | 预测为不合格(1) | 合计 |
---|---|---|---|
合格(0) | 182(True Positive) | 18(False Negatice) | 200 |
不合格(1) | 26(False Positive) | 174(True Negative) | 200 |
合计 | 208 | 192 | 400 |
上表中显示了模型对产品进行是否合格的预测结果,产品共400件。
1.1 准确率(Accuracy)
准确率是指分类正确的样本占总样本个数的比例,即 A c c u r a c y = n c o r r e c t / n t o t a l Accuracy = n_{correct}/n_{total} Accuracy=ncorrect/ntotal
其中 n c o r r e c t n_{correct} ncorrect为被正确分类的样本个数, n t o t a l n_{total} ntotal为总样本的个数。以上表为例,则预测产品是否合格的模型的准确率为 a c c = ( 182 + 174 ) / 400 ∗ 100 % = 89.0 % acc=(182+174)/400*100\% = 89.0\% acc=(182+174)/400∗