引言
这个项目主要是研究二手车市场上车辆定价的决定因素,本文将展示如何从汽车销售商网站Cars24上抓取所有的搜索结果,并建立一个包含所有找到的列表的数据库。
使用的工具(库)
-
Requests
-
Beautiful Soup
-
Pandas
-
Numpy
-
Matplotlib
-
Seaborn
-
Plotly
导入所需的包并加载数据集:
来自网站的原始数据:
现在,可以看到有一个名为Unnamed:0
的列。这一列一定是在抓取数据并将其保存到CSV文件中时添加的。因此,下一步就是删除数据。
数据清洗:
现在将删除Unnamed:0
列,然后再次清洗,使数据可视化。
清洗后的Dataframe:
数据概览:
DataFrame.info()
将为项目提供有关数据类型和每一列中非空值的数量的信息。
Describe()
每一列的数字特征和信息:
Data Frame.describe()
可以给出数字数据的描述。这可以帮助我们获得每个数字列的最小值、最大值、平均值、标准偏差等数值。
最后我们得到了560行和9列,并且在Year
、Brand
、Car name
、kilometer
、owner
、fuel
、Emi
、location
和price
等列中没有空值。
探索数据
车辆信息汇总
列类型:
-
数字 —
kilometer
、price
、Emi
-
分类 —
Year
、Brand
、Car name
、fuel
、location
、owner
-
2010年至2022年之间的车型年份
-
公里数范围从121英里到99944英里不等
-
价格从1.62万到24.36万卢比不等
数据可视化
单变量:
最畅销的品牌:
a[‘Brand’].value_counts().plot(kind=’bar’)
plt.xlabel(‘Brand’)
plt.ylabel(‘Highest selling’)
plt.show()
- 从上面的图表中可以看到Tata是最畅销的汽车。
价格分布:
sns.histplot(a[‘price(in_lk)’],kde=True)
-
平均价格约为60k,二手车的中位数为50k。
-
价格分布更像是一个长尾分布和右偏度。这在价格分布上是非常正常的。
燃料
px.bar(a[‘fuel’].value_counts())
-
人们拥有的大多数汽车是汽油类型的。
-
人们购买最多的是汽油车,然后是柴油车和压缩天然气车。
双变量分析
不同数量的前车主的车辆列表 :
sns.barplot(x=a[‘owner’],y=a[‘price(in_lk)’],errorbar=None)
-
从上面的图中可以看出,第一任车主的平均驾驶里程较少。
-
从第一任车主那里买车更好。
来自不同州的车辆列表
a.groupby([‘Location’])[‘year’].count().sort_values(ascending=False).plot(kind=’bar’, figsize=(10,6))
plt.ylabel(‘Number of listings per state’, fontsize=12)
plt.xlabel(‘State’, fontsize=12)
plt.title(‘Listings per State’, fontsize=18)
plt.show()
- Hyderabad、Mumbai、Pune是二手车上市数量最多的三个州,这三个州占印度汽车市场的32%。
比较年份和价格:
sns.lineplot(x=a[“year”],y=a[“price(in_lk)”],errorbar=None)
- 我们可以看到,当年份增加时,价格也在增加。
燃料类型将如何影响转售价格?
sns.boxplot(x=a[“fuel”],y=a[“price(in_lk)”])
-
从上图中可以注意到,大多数燃料类型的柴油车价格高于其他汽油和压缩天然气。
-
这就是为什么大多数人想购买汽油车的原因。
多变量分析:
sns.barplot(x=a[“year”],y=a[“price(in_lk)”],errorbar=None,hue=a[“owner”])
-
在大多数年份里,第一任车主的汽车现价都很高。
-
当汽车以高价出售时,第一任车主的售价比第二任和第三任车主的售价高。
相关性:
可以使用corr()
函数找到各种特征之间的相关性。
sns.heatmap(a.corr(),annot=True)
-
Price
和Emi
的相关度为0.61。 -
Price
一栏与Emi
高度相关,因此我们可以使用任何一个变量进行分析。
plt.figure(figsize=(18,7))
sns.barplot(x=a[“Location”],y=a[“price(in_lk)”],hue=a[“Location”],errorbar=None)
plt.xticks(rotation = 90)
plt.show()
- 从上图可以看出,Gurgaon地区的汽车价格高于其他地区。
结论
从可视化中,我们发现了以下结论:
-
Hyderabad,Mumbai,Pune是排名前三的二手车市场。
-
在大多数年份里,第一任车主的汽车现价都很高。
-
当汽车出售时,第一任车主的售价比第二任和第三任车主的售价高。
-
我们可以看到,在Gurgaon地区的汽车价格高于其他地区。
-
在印度最畅销的汽车制造商是Tata、Maruti。
-
当二手车定价时,最重要的特征包括里程数、车主和车型年份。从可视化中,我们看到里程数越高,价格越低。
-
车型价格也与Emi相关,车龄越长,价格越低。
最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你,干货内容包括:
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等习教程。带你从零基础系统性的学好Python!
👉Python所有方向的学习路线👈
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python入门学习视频👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉Python副业兼职路线&方法👈
学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。
👉Python学习礼包👈
包括:Python开发工具、Python热门电子书、Python100道练习题、Python爬虫&数据分析&人工智能&办公自动化等学习资料
👉Python实战练手案例&源码👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉Python大厂面试资料👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取【保证100%免费
】
点击免费领取《CSDN大礼包》:Python入门到进阶资料 & 实战源码 & 兼职接单方法 安全链接免费领取