提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
上一章中,我们讨论了局部直方图均衡化,这对于增强图像的局部细节非常有用,这一节我们将一个效果更好的局部增强方式,直方图统计量增强。直方图统计量增强,是基于直方图的统计量信息(如均值和方差)对图像的灰度和对比度进行调整。直方图统计量不仅用于图像的全局增强,在图像局部增强中更加有效。
1. 原理说明
直方图统计量局部增强的公式如下:
g ( x , y ) = { C f ( x , y ) 条件成立 f ( x , y ) 条件不成立 g(x,y) = \begin{cases} Cf(x,y) & 条件成立\\ f(x,y) & 条件不成立 \\ \end{cases} g(x,y)={
Cf(x,y)f(x,y)条件成立条件不成立 条件: ( k 0 ∗ m G < = m R < = k 1 ∗ m G ) a n d ( k 2 ∗ σ G < = σ R < = k 3 ∗ σ G