4.5 直方图统计量增强

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

上一章中,我们讨论了局部直方图均衡化,这对于增强图像的局部细节非常有用,这一节我们将一个效果更好的局部增强方式,直方图统计量增强直方图统计量增强,是基于直方图的统计量信息(如均值和方差)对图像的灰度和对比度进行调整。直方图统计量不仅用于图像的全局增强,在图像局部增强中更加有效。


1. 原理说明

直方图统计量局部增强的公式如下:
g ( x , y ) = { C f ( x , y ) 条件成立 f ( x , y ) 条件不成立 g(x,y) = \begin{cases} Cf(x,y) & 条件成立\\ f(x,y) & 条件不成立 \\ \end{cases} g(x,y)={ Cf(x,y)f(x,y)条件成立条件不成立 条件: ( k 0 ∗ m G < = m R < = k 1 ∗ m G ) a n d ( k 2 ∗ σ G < = σ R < = k 3 ∗ σ G

### 关于CART、ID3和C4.5算法的研究进展 #### 1. **CART算法** CART(Classification and Regression Trees)是一种广泛使用的决策树算法,其核心在于利用基尼系数作为分裂准则。近年来,在大规模数据处理场景下,基于CART的改进方法不断涌现。例如,XGBoost[^3] 和 LightGBM 是两种流行的梯度提升框架,它们都以内置的方式优化了传统的CART模型性能。 - XGBoost 提供了一种正则化项来控制模型复杂度,从而减少过拟合的风险。 - LightGBM 则引入直方图技术以及 Leaf-wise 的生长策略,显著提升了训练速度并降低了内存消耗。 这些工具不仅保留了原始 CART 构建二叉树的特点,还针对实际应用需求进行了大量扩展与增强。 #### 2. **ID3算法** 尽管 ID3 使用信息增益作为衡量标准简单直观,但由于未考虑特征值数量差异可能带来的偏差问题,在现代大数据环境下已较少单独使用。然而,学术界仍然围绕如何改善传统 ID3 存在的一些局限展开探索: - 针对连续型变量预处理不足之处提出了多种离散化方案; - 结合其他统计测试指标如卡方检验 (Chi-Square Test)[^1] 来辅助判断最佳分割点位置; 此外值得注意的是某些特定领域比如生物医学图像分析等领域仍可见到改良版 ID3 应用实例报道。 #### 3. **C4.5算法** 相比起前两者来说,C4.5 更加成熟完善, 它解决了ID3无法很好应对数值属性的问题并通过引入剪枝操作提高了泛化能力 。目前关于此方向上的主要突破集中在以下几个方面: - 自适应权重调整机制被应用于解决不平衡类别分布下的预测准确性下降难题; - 多核函数融合思想也被尝试融入其中以便更好地捕捉不同类型的数据模式 ; 另外还有研究者致力于开发更加高效的分布式版本使得能够快速有效地完成超大规摸数据库上的任务执行过程. ```python from sklearn.tree import DecisionTreeClassifier # 创建一个基于CART算法的分类器对象 clf = DecisionTreeClassifier(criterion='gini') # 训练模型... ``` 以上代码片段展示了如何借助 scikit-learn 实现基本形式下的 CART 决策树构建流程。 --- ### 总结 综上所述可以看出虽然经典理论基础已经确立多年但仍有许多值得深入挖掘的地方等待我们去发现和完善。随着计算机硬件水平不断提高加上新兴技术手段层出不穷相信未来几年里这三个经典算法还将焕发出新的活力继续服务于各个行业当中发挥重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值