GPT-4o再次掀起多模态大模型的浪潮。
如果他们能以近似人类的熟练程度,在不同领域执行广泛的任务,这对许多领域带来革命性进展。
因而,构建一个全面的评估基准测试就显得格外重要。然而评估大型视觉语言模型能力的进程显著落后于它们自身的发展。
来自上海AI Lab、香港大学、上海交大、浙江大学等多家机构提出了 MMT-Bench。
这是一个全方位的多模态基准测试,旨在全面评估大型视觉语言模型(LVLMs)在多模态多任务理解方面的表现。
研究团队还对当前几个代表的视觉大模型进行了能力评估,结果发现感知错误、推理错误是所有模型最常见的两大错误。
多模态多任务AGI基准测试MMT-Bench
MMT-Bench的广度体现在三个方面。
首先,MMT-Bench数据经过精心设计,包含32K个多选视觉语言问题,涵盖了32个核心元任务和162个子任务,这比此前的评测数据集MMBench大8.1倍。
其次,MMT-Bench包含了13种图像类型,如自然场景、合成图像、深度图、富文本图像、绘画、屏幕截图、点云、医学图像等。这样的图片多样性要求模型能够解释理解各种视觉输入。
第三,MMT-Bench涵盖了多种多模态情景,如车辆驾驶、GUI导航和具身AI,测试了14种多模态能力,包括视觉识别、定位、推理、OCR、计数、3D感知、时间理解等。
构建评测任务 。
MMT-Bench的评测任务在构建时旨在包含尽可能多的多模态任务。为此,研究人员首先提出多模态理解的元任务。然后,通过去重和筛选重要任务总结出32个元任务。
接着,将每个元任务分解为几个子任务。子任务是否被保留在MMT-Bench中,需要满足三个标准:
-
1、子任务是否检验了基本的多模态能力;
-
2、子任务对当前的大型视觉语言模型(LVLMs)是否具备挑战性;
-
3、子任务的测试样本是否可以公开获取。
经过选择,MMT-Bench共包含了162个子任务,这比之前任务最多的评测集TinyLVLM-eHub大3.8倍。
MMT-Bench与此前评测数据的详细比较如下表所示。
数据收集。
MMT-Bench的研究人员设计了一个高效的数据收集流程,以构建每个子任务的多选视觉语言问题评估数据。
首先,他们通过Google、Paper With Code、Kaggle和ChatGPT等多种数据来源,根据子任务的名称全面搜索相关数据集。下载数据集后,再细致地评估它们是否适合评估子任务,确保数据集的可用性和相关性。
接着,研究人员定义了一种统一的元数据格式,用于整理下载的数据集。每个元数据样本包括图像和元信息,其中元信息包括生成评测问题和答案所需的必要信息,以及所需推理能力的标注信息和视觉图片的类型。
为了提高评估效率,在每个任务中,研究人员通过随机抽样将样本数量最大限制为200,并且每个数据集包含相同数量的样本。
最后,对于每个子任务,研究人员从它们的元数据中生成多选视觉语言问题及其选项和答案。具体来说,根据特定任务,研究人员或手动设计规则,或使用ChatGPT来进行高质量的QA生成。
例如,在基于草图进行图像检索的任务中,使用对应的图像作为正确答案,并从元数据中随机抽取其他图像来生成错误选项。而在生成视频描述的任务中,则使用ChatGPT编写容易混淆的错误选项。
综上,MMT-Bench共包含31,325个精心设计的多选问题,涵盖13种输入图像类型,如自然场景、合成图像、富文本图像、医学图像等,覆盖32个核心元任务和162个子任务,用于多任务多模态理解。
与之前的LVLMs基准测试相比,MMT-Bench中的问题涵盖了多种多模态场景,如GUI导航和文档理解,测试了包括视觉识别、定位、推理、OCR、计数、3D感知、时间理解等14种能力。这些特点确保MMT-Bench满足评估多任务AGI的任务广度要求。
评测结果
研究人员基于MMT-Bench对30种公开可用的大型视觉语言模型(LVLMs)进行了综合评估。
结果显示MMT-Bench的基准测试给现有的LVLMs带来了重大挑战,即使是InternVL-Chat、GPT-4o和GeminiProVision等先进模型,其准确率也仅分别为63.4%、65.5%和61.6%。
综合而言,闭源的专有模型GPT-4o目前在MMT-Bench中取得了领先地位,超过了InternVL-chat、QWen-VL-Plus、GPT-4V和GeminiProVision等其他模型。
值得注意的是,开源模型InternVL-chat和QwenVL-Max正紧随GPT-4o之后,这为未来开源社区模型能与闭源专有模型竞争甚至超越它们的前景增添了信心。
在所有元任务的评测结果中,研究人员还发现:
1)大多数大型视觉语言模型在视觉识别(Visual Recognition)和视觉描述(Visual Captioning)任务中表现出色,凸显了LVLMs在识别“物体是什么”和描述图像中展示内容的能力。然而,对于精细感知任务(如定位、像素级感知等)或复杂推理任务(如图像评测判断),大多数LVLMs仍表现较差。
2)对于LLaVA-v1.5和LLaVA-v1.5-Xtuner,随着模型大小的增加(从7B增加到13B),其性能显著提高,而从InternLM升级到InternLM2也提高了LLaVA的性能。这表明即便保持训练数据和视觉编码器保持不变,采用更大或改进的LLMs也能够提升多任务性能。
3)BLIP2即使没有经过指令调整,也在性能上超过了大多数经过数百万指令数据调整的LVLMs,这表明在某些任务中使用指令调整的数据甚至可能损害其他任务的泛化能力。
任务地图。
得益于MMT-Bench中任务的广泛覆盖,研究人员可以在任务地图上评估LVLMs的多模态性能。
通过分析任务地图中任务之间的关系,可以系统地解释不同任务在多模态能力中的作用。基于任务地图,研究人员发现LVLMs在彼此相近的任务上获得更一致的性能排名。此外,任务地图还可以用来发现领域外(OoD)任务和领域内任务。
错误分析。
为了分析LVLMs在MMT-Bench上的错误分布,研究人员检查了三个LVLMs:GPT-4V、GeminiProVision和InternVL-Chat-V1.2(简称InternVL)。
结果发现,感知错误(Perception Error)是所有模型中最常见的错误类型。
其中GPT-4V的感知错误率显著低于GeminiProVision(76.9%)和InternVL(67.2%),表明其在感知任务中的表现优越。
推理错误是第二常见的错误类型,其中InternVL的推理错误率最高(14.8%),其次是GeminiProVision(10.4%)和GPT-4V(9.94%),这凸显了所有模型在复杂推理任务中所面临的挑战。
最后简单一下,MMT-Bench是一个旨在评估LVLMs在多模态多任务理解方面的一个综合性基准测试。MMT-Bench的广度体现在其精心构建的包含31325个多选问题的数据上,这些问题涵盖了162个多模态任务。
评估结果揭示了当前LVLMs仍面临由MMT-Bench所带来的重大挑战。MMT-Bench的目标是衡量LVLMs在多任务AGI路径上的进展,并在未来将继续扩展其所涵盖的任务集。研究人员相信,MMT-Bench将进一步激发LVLMs的研究和开发,使得人们能够更接近实现真正智能的多模态系统。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。