MCP 和 A2A 之后又一 AI Agent 协议刷屏了:AG-UI 协议架构设计剖析

随着 AI Agent 在企业中应用越来越广,AI Agent 在落地过程中,MCP 解决了 AI Agent 到 Tools 之间的通信标准,A2A 解决了 AI Agent 到 AI Agent 之间的通信标准。但是仍缺少一块:用户到 AI Agent 的通信协议

图片

AG-UI 协议横空出世,专为解决前端应用与 AI Agent 的通信交互而设计

图片

AG-UI 让你能够轻松地在网页、APP、应用程序或嵌入式设备中集成 AI 助手、AI 客服和智能问答 UI,避免了为每个应用程序重复开发基础功能的麻烦,也省去了处理交互逻辑的烦恼。

AG-UI 完善了 AI 协议栈,专注于构建 AI Agent 与用户前端之间的桥梁。它采用事件驱动的设计,定义了16种标准事件,并支持 SSE、WebSocket 和 Webhook 等传输方式,与 LangGraph、CrewAI 等框架兼容。

它就像是为你的前端安装了一个 AI “大脑”,无需绑定到特定的模型或框架,一套协议就能满足所有的交互需求。

为什么需要 AG-UI?

每个 AI Agent 后端都有自己的工具调用ReAct 样式规划状态差异和输出格式机制

如果你使用 LangGraph,前端将实现自定义的 WebSocket 逻辑、杂乱的 JSON 格式和特定于 LangGraph 的 UI 适配器。

但要迁移到 CrewAI/Dify 等,一切都必须进行调整,这样工作量大大增加。

图片

Github 地址

https://github.com/ag-ui-protocol/ag-ui

使用文档地址

https://docs.ag-ui.com/introduction

下文对 AG-UI 详细剖析之。

1.AG-UI 架构设计剖析

*第一、AG-UI 架构设计*

AG-UI 使用一个轻量级、事件驱动的协议来连接 AI Agents 和前端应用程序,架构设计如图所示:

图片

  • **Front-end**:通过 AG-UI 进行通信的应用(聊天或任何启用 AI 应用) ;**

  • **AI Agent A**:前端可以直接连接的 AI Agent,无需通过代理;**

  • **Secure Proxy**:一个中介代理,安全地将前端的请求路由到多个 AI Agents;**

  • **AI Agent B 和 C**:由代理服务管理的 AI Agents。**

*第二、AG-UI 工作机制*

AG-UI 的**核心工作机制非常简洁而优雅,**如下图所示:

图片

  • 客户端通过 POST 请求启动一次 AI Agent 会话;

  • 随后建立一个 HTTP 流(可通过 SSE/WebSocket 等传输协议)用于实时监听事件;

  • 每条事件都有类型和元信息(Metadata);

  • AI Agent 持续将事件流式推送给 UI;

  • UI 端根据每条事件实时更新界面;

  • 与此同时,UI 也可反向发送事件、上下文信息,供 AI Agent 使用。

AG-UI 不再是单向的信息流,而是一种真正的双向“心跳式”交互机制。AG-UI 就像 REST 是客户端到服务器请求的标准一样,AG-UI 将实时 AI Agent 更新流式传输回 UI 的标准。从技术上讲,AG-UI 使用服务器发送事件(SSE)将结构化 JSON 事件流式传输到前端。

每个事件都有一个显式的有效负载(比如:Python 字典中的 keys):

  • TEXT_MESSAGE_CONTENT 用于令牌流式处理;

  • TOOL_CALL_START 以显示工具执行情况;

  • STATE_DELTA 更新共享状态(代码、数据等);

  • AGENT_HANDOFF 在 AI Agent 之间顺利传递控制权。

并且 AG-UI 带有 TypeScript 和 Python 的 SDK,即插即用适用于任何技术栈,如下图所示:

图片

在上图中,来自 AI Agent 的响应并不特定于任何工具包。这是一个标准化的 AG-UI 响应。

AG-UI 提供了前端 TypeScript 和后端 Python 的 SDK,可无缝接入到现有 AI Agent 代码中核心模块包括:

  • RunAgentInput:运行 AI Agent 的输入参数;

  • Message:用户助手通信和工具使用;

  • Context:提供给 AI Agent 的上下文信息;

  • Tool:定义 AI Agent 可以调用的函数;

  • State:AI Agent 状态管理。

1、前端接入

npm install @ag-ui/corenpm install @ag-ui/client

2、后端 Python 端接入

from ag_ui.core import TextMessageContentEvent, EventTypefrom ag_ui.encoder import EventEncoder# Create an eventevent = TextMessageContentEvent(    type=EventType.TEXT_MESSAGE_CONTENT,    message_id="msg_123",    delta="Hello, world!")# Initialize the encoderencoder = EventEncoder()# Encode the eventencoded_event = encoder.encode(event)print(encoded_event)# Output: data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"msg_123","delta":"Hello, world!"}\n\n

*第三、AG-UI 关键特性*

  • *🪶* *轻量级*:设计简单,易于理解与扩展;

  • *🔌* *支持多种传输协议**:Server-Sent Events(SSE)、WebSocket、Webhook 任你选择;*

  • *🔄* *真正双向同步*:支持实时对话、工具调用、上下文更新等;

  • *🧩* *框架无关*:LangGraph、CrewAI、Mastra 等框架均可无缝对接;

  • *🛡️* *宽松的 Schema 匹配策略*:低耦合、高兼容,降低开发门槛;

  • *⚙️* *即插即用*:开源协议,前端(比如:React/Vue)快速集成无门槛。

*第四、AG-UI、A2A、MCP 协议对比*

AG-UI 明确且专门针对 AI Agent-用户交互层。它不与诸如 A2A(AI Agent 到 AI Agent 协议)和 MCP(模型上下文协议)等协议竞争。

比如:同一个 AI Agent 可能通过 A2A 与另一个 AI Agent 通信,同时通过 AG-UI 与用户通信,同时调用由 MCP Server 提供的工具。

这些协议在 AI Agent 生态系统中起到互补的作用:

  • *AG-UI*:处理人在循环中的交互和流式 UI 更新;

  • *A2A*:促进 AI Agent 到 AI Agent 之间的通信和协作;

  • *MCP*:在不同模型之间标准化工具调用和上下文处理。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值