支付宝医疗大模型亮相!
中英文医疗考试、基准测试达到甚至超过GPT-4水准。
此外,其医疗专业能力在中文医疗LLM评测榜单promptCBLUE中,位列A榜第一,B榜第二。
模型在识别报告、药品、毛发等图像准确率中达90%以上。
WAIC现场,支付宝还联合人民卫生出版社、北京大学医学部、浙江省卫生健康委等20家机构,联合发起AI医疗共建计划。
支付宝医疗大模型
不同于其他领域大模型,医疗大模型在多模态、安全性、专业性能力上面都提出了更高的挑战。
首先是多模态,它是以百灵大模型为基座模型。
今年年初,蚂蚁就判断了原生多模态的技术方向,并持续投入。目前,百灵大模型已经具备看、听、说、画原生多模态能力。
换言之,能直接理解并训练音频、视频、图、文等多模态数据。
在此基础之上,它添加了包括添加了包含报告、影像、药品等百亿级中英文图文、千亿级医疗文本语料及千万级高质量医疗知识图谱。
目前,该多模态医疗大模型不仅能提供智能问答、病历结构化和检索、辅助诊断;还能识别药品以及上百种医学报告、进行毛发健康检测等。
这些能力都可以直接嵌入医院等机构医疗环节全流程,快速应用。
其次在专业可靠方面,蚂蚁大模型应用负责人顾进杰透露,支付宝在研发、模型测试阶段采取了这些举措。
在研发阶段,支付宝还与数百个专业医学团队、专家进行合作标注数据,保障信息权威可信。
与此同时,还联合上海仁济医院推出首个中文医疗专科问答推理数据集RJUA-QA。
模型测试阶段,用户、患者、医生参与问答反馈。
最后在安全性方面,医疗场景下,保障技术可靠与数据隐私安全至关重要。而蚂蚁本身在安全领域就有多年的深耕。
此次,支付宝还面向行业推出“医疗可信一体机+可信云”的解决方案。
前者实现训推一体,国产算力软硬件协同优化加速,解决医院算力不足的痛点;后者通过公有云和私有云部署密态推理,解决数据隐私安全方面的问题。
在此大模型能力基础之上,发布了全模态数字人、智能体相关产品以及行业解决方案。
其实早在去年,就已经开始了AI在医疗场景方面的布局。
去年11月,浙江卫健委应用支付宝开放的“AI就医助理”解决方案,并打造了全国首个数字健康人“安诊儿”,给浙江居民提供云陪诊、健康咨询等服务,上线以来,服务了1000多家医疗机构。
而前段时间,上海市第一人民医院,应用AI大模型,不仅上线了上海首个可语音交互的“数字陪诊师”,还在业内首创了生成式电子病历,将繁杂的文书工作从原本的10分钟缩减到了15秒。
更早之前,蚂蚁就已经在如何解决用户看病难等实际问题进行了相关探索。2014年支付宝就支持全国第一笔远程挂号缴费。
经过10年发展,平台已服务超6亿看病就医人群,是国内规模最大的医保第三方在线服务平台、一站式的医疗健康服务平台。
目前,全国300多个城市、超3600家医院在支付宝上提供一站式数字医疗服务。
蚂蚁十年医疗生态积累,也成为他们医疗大模型的独特优势和核心壁垒。
医疗作为蚂蚁落地三大核心应用领域之一,也就不奇怪了。
蚂蚁支付宝落地三大应用
医疗、金融、生活。
大模型进入应用时代,蚂蚁也正式公开他们落地的三大领域,表现形态为专业智能体:
AI就医助理、AI金融助理、支付宝智能助理。
其中,支付宝智能助理在WAIC上首次亮相,并入选今年的镇馆之宝。
在支付宝上,只需首页往下拉就可以唤醒它,通过对话就能完成办事、问诊、打车等服务,随时调用起自带的上千个小程序。
比如点单茶饮or咖啡,目前支付宝支持包括星巴克、瑞幸、喜茶、霸王茶姬、蜜雪冰城等首批12个茶饮品牌小程序。
你只需下达指令,“我想点一杯星巴克的中杯冰拿铁”,AI便会进入小程序自动下单,用户确认并付款后,就能到附近的线下门店取到咖啡。
之所以选择专业智能体这一形态,蚂蚁集团董事长兼CEO井贤栋透露了背后的原因。
业界普遍认为,通用大模型落地严谨产业面临着三个“能力短板”:领域知识相对缺乏、复杂决策难以胜任,以及对话交互不等于有效协同。
而为了破解这些难题,专业智能体或许会是一条有效路径。
从我们的实践来看,专业智能体是大模型落地严谨产业的有效路径。
值得一提的是,此次支撑起这三大智能体的关键技术——智能认知决策技术与平台,也获得本次大会重要奖项“卓越人工智能奖(SAIL)TOP30”。
这项技术由蚂蚁集团和浙江大学,历时7年联合攻关,大幅提升了人工智能服务严谨产业的专业能力、准确性和自我学习能力,让AI和大模型做决策更聪明、更可靠。
截至目前,项目技术已广泛应用于医疗民生、金融、政务等行业,服务了上海仁济医院、上海市一医院、浙江省卫健委等2600余家医院和机构,人保健康、浦发银行等数10家金融机构,推动人工智能真正规模化落地产业。该项目还获授权发明专利100余项,部分成果获2022年中国电子学会科技进步一等奖、2023年吴文俊人工智能科技进步一等奖等多个奖项。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。