一.创建知识库操作
选择知识库选项卡,然后点击创建知识库。
1.方式一:先创建知识库,然后上传文件
创建一个空知识库。
输入知识库名称,然后创建。
2.方式二:直接上传文件,然后创建默认知识库
除此之外也可以直接上传文本文件,然后系统会创建一个默认知识库。直接上传"QA文档.txt"后会自动创建默认知识库名称和知识库描述等信息:
二.创建知识库实现
1.方式一:先创建知识库,然后上传文件
创建空白知识库的post方法:
class DatasetListApi(Resource): @setup_required @login_required @account_initialization_required def get(self): ...... return response, 200 @setup_required # 确保系统已经初始化 @login_required # 确保用户已经登录 @account_initialization_required # 确保用户已经初始化 def post(self): parser = reqparse.RequestParser() # 创建请求参数解析器 parser.add_argument('name', nullable=False, required=True, help='type is required. Name must be between 1 to 40 characters.', type=_validate_name) # 添加请求参数 parser.add_argument('indexing_technique', type=str, location='json', choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=True, help='Invalid indexing technique.') # 添加请求参数 args = parser.parse_args() # 解析请求参数 # The role of the current user in the ta table must be admin or owner if not current_user.is_admin_or_owner: raise Forbidden() try: dataset = DatasetService.create_empty_dataset( # 创建空白知识库 tenant_id=current_user.current_tenant_id, # 租户ID name=args['name'], # 名称 indexing_technique=args['indexing_technique'], # 索引技术 account=current_user # 用户 ) except services.errors.dataset.DatasetNameDuplicateError: # 数据集名称重复 raise DatasetNameDuplicateError() # 数据集名称重复错误 return marshal(dataset, dataset_detail_fields), 201 # 返回数据集详情
调用http://localhost:5001/console/api/datasets
接口:
{ "id": "cbd8a746-a9ab-4d79-8337-99d4ac989691", "name": "\u6d4b\u8bd5\u77e5\u8bc6\u5e93", "description": null, "provider": "vendor", "permission": "only_me", "data_source_type": null, "indexing_technique": null, "app_count": 0, "document_count": 0, "word_count": 0, "created_by": "c17d706d-6418-4ca0-9ba5-34b43bb7e32c", "created_at": 1719337063, "updated_by": "c17d706d-6418-4ca0-9ba5-34b43bb7e32c", "updated_at": 1719337063, "embedding_model": null, "embedding_model_provider": null, "embedding_available": null, "retrieval_model_dict": { "search_method": "semantic_search", "reranking_enable": false, "reranking_model": { "reranking_provider_name": "", "reranking_model_name": "" }, "top_k": 2, "score_threshold_enabled": false, "score_threshold": null }, "tags": [] }
实际调用的create_empty_dataset方法:
创建空白知识库中,数据存入数据表datasets中。
2.方式二:直接上传文件,然后创建默认知识库
(1)save_document_without_dataset_id
DatasetInitApi
类是一个资源类,它继承自Resource
类。在这个类中,定义了一个post
方法,这个方法对应HTTP的POST请求。
post
方法的主要功能是初始化一个数据集。首先检查用户是否已经设置、登录并完成了初始化。然后,它会检查用户是否有足够的权限来创建一个新的向量空间。
在post
方法中,首先通过reqparse.RequestParser()
解析请求中的参数,包括索引技术(indexing_technique
)、数据源(data_source
)、处理规则(process_rule
)、文档形式(doc_form
)、文档语言(doc_language
)和检索模型(retrieval_model
)。
如果索引技术是’high_quality’,则会尝试获取默认的嵌入模型实例。如果获取失败,会抛出相应的错误。然后,它会验证请求参数是否有效。如果参数有效,它会调用DocumentService.save_document_without_dataset_id
方法来创建一个新的数据集并在其中保存文档。
最后,它会返回一个包含新创建的数据集、文档和批次信息的响应。
save_document_without_dataset_id
方法的主要功能是在没有给定数据集ID的情况下保存文档。这个方法主要用于创建一个新的数据集,并在其中保存文档,返回新创建的数据集、保存的文档和批次信息。以下是该方法的主要步骤:
首先,它会检查是否启用了计费功能。如果启用了计费,它会计算上传的文档数量,并检查是否超过了批量上传的限制或者文档上传的配额。
如果文档的索引技术是’high_quality’,它会尝试获取默认的嵌入模型实例,并获取数据集集合绑定和检索模型。
然后,它会创建一个新的数据集,包括租户ID、数据源类型、索引技术、创建者、嵌入模型、嵌入模型提供者、集合绑定ID和检索模型等信息。
接着,它会调用save_document_with_dataset_id
方法来在新创建的数据集中保存文档。
最后,它会更新数据集的名称和描述,并提交数据库事务。
以上是在datasets数据表中插入的一条知识库记录。
(2)save_document_with_dataset_id
通过调试得到document_data
一个示例数据如下所示:
{ 'indexing_technique': 'high_quality', 'data_source': { 'type': 'upload_file', 'info_list': { 'data_source_type': 'upload_file', 'file_info_list': { 'file_ids': ['6f393937-d0ec-41b3-a6cb-56f38081eb94'] } } }, 'process_rule': { 'rules': {}, 'mode': 'automatic' }, 'duplicate': True, 'original_document_id': None, 'doc_form': 'text_model', 'doc_language': 'Chinese', 'retrieval_model': { 'search_method': 'semantic_search', 'reranking_enable': False, 'reranking_model': { 'reranking_provider_name': '', 'reranking_model_name': '' }, 'top_k': 2, 'score_threshold_enabled': False, 'score_threshold': None } }
save_document_with_dataset_id
方法的主要功能是在给定数据集ID的情况下保存文档。这个方法主要用于在已存在的数据集中创建或更新文档,返回保存的文档和批次信息。以下是该方法的主要步骤:
首先,它会检查是否启用了计费功能。如果启用了计费,它会计算上传的文档数量,并检查是否超过了批量上传的限制或者文档上传的配额。
如果数据集是空的,它会更新数据集的数据源类型和索引技术。
如果是更新文档,它会调用update_document_with_dataset_id
方法来更新文档。如果是新建文档,它会保存处理规则,然后根据数据源类型(如上传文件或导入notion)创建文档。
最后,它会触发异步任务来处理文档索引。
以上是在documents数据表中插入的一条文件记录。
三.知识库文档操作
在知识库中添加文档:
数据源可以是导入已有文本,同步自Notion内容,同步自Web站点(暂未实现)。文档类型已支持 TXT、 MARKDOWN、 PDF、 HTML、 XLSX、 XLS、 DOCX、 CSV,每个文档不超过 15MB。
上传文档后,可以分段设置、索引方式、检索设置。分段设置包括自动分段与清洗和自定义2种情况。索引方式包括高质量和经济2种情况。检索设置包括向量检索、全文检索和混合检索3种情况。
TopK表示用于筛选与用户问题相似度最高的文本片段。系统同时会根据选用模型上下文窗口大小动态调整分段数量。Score阈值表示用于设置文本片段筛选的相似度阈值。
文档上传后就可以进行Embedding处理。
点击"前往文档"可以查看文档的处理信息。
点击文档可查看文档的段落、元数据(需要自行设置)和技术参数信息。
四.上传文档实现
调用接口http://localhost:5001/console/api/files/upload
:
{ "id": "d0bd9b1e-49f4-4bfa-ac7f-24e5d9ac1030", "name": "疲劳自救手册:用认知行为疗法找回元气满满的自己.html", "size": 292535, # 0.28MB "extension": "html", "mime_type": "text/html", "created_by": "c17d706d-6418-4ca0-9ba5-34b43bb7e32c", "created_at": 1719341969 }
源码位置:dify\api\controllers\console\datasets\file.py
源码位置:dify\api\services\file_service.py
存储到数据表upload_files
中的记录如下:
id:d0bd9b1e-49f4-4bfa-ac7f-24e5d9ac1030 tenant_id:f3789322-26d3-473a-82ea-f51c77face65 storage_type:local key:upload_files/f3789322-26d3-473a-82ea-f51c77face65/4e7b05eb-fa25-48ec-ae37-9088cb265e64.html name:疲劳自救手册:用认知行为疗法找回元气满满的自己.html size:292535 extension:html mime_type:text/html created_by:c17d706d-6418-4ca0-9ba5-34b43bb7e32c created_at:2024-06-26 02:59:29.144151 used:false used_by: used_at: hash:d6c38b0743dd6edfa95dac39fed49f4b8e75e79ee8bc47617b1f1e8b519d3d7f created_by_role:account
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。