背景
电子政务网上大厅统一接件系统是为各市、区(市)县所有行政权力事项(行政许可、行政处罚、行政强制、行政征收、其他行政权力等)实现在线统一接件、办理调度、办件过程信息查询、结果查询及公开、服务评价、办件统计等功能的应用系统,它通过标准数据接口、基于政务信息共享交换平台实现与行政审批系统等市级综合业务平台、地税局网上办税系统等部门业务平台、电子监察系统等应用实现互联互通,办件数据共享,为没有业务系统的部门及事项提供在线接件功能,通过该系统形成一个真正意义的在线办事服务平台,将分散于不同业务系统的接件平台统一到政府门户网站,让用户不再跑网上的分散窗口。
针对政府网站信息搜不到、搜不全的问题,平台对网站信息进行结构化处理,通过构建信息知识图谱,整合辖区情况介绍、政策文件、办事服务、热门问答等内容,形成知识库。市民只需输入关键词或问题,平台就能迅速总结提炼相关信息,有效提升咨询效率和准确度。GPT智能客服通过对大量政策文件的深度学习,精准把握政策深层含义,当企业用户、普通市民只需在线输入问题,平台即可智能匹配相关政策法规和办事流程等信息,并生成清晰、简洁的解读及指导,有效破解传统智能客服“不解人意”“答非所问”的问题,帮助公众更好理解政策。以下实践某政务综合窗口接件系统基于RAG的实践。
RAG(Retrieval-Augmented Generation)
RAG技术全称为“检索增强的生成”,它将传统的信息检索技术与现代的自然语言生成技术相结合,旨在提高文本生成的准确性和相关性。这种技术通过引入外部知识源,使得语言模型在生成文本时能够参考更广泛、更准确的信息,从而显著提升生成内容的质量和可信度。
RAG技术主要由两个核心组件构成:检索组件和生成组件。
-
检索组件:负责从大型知识库中检索出与给定输入相关的信息。这个知识库可以是维基百科、专业期刊、书籍等任何形式的文档集合。检索组件通常使用向量检索技术(如FAISS或Annoy库)来快速定位相关文档或文档片段。
-
生成组件:是一个预训练的Transformer模型(如GPT或BERT),它结合了原始输入和检索组件提供的外部信息来生成文本。生成组件能够根据融合了检索信息的上下文生成回答或续写文本,从而确保生成内容的准确性和丰富性。
流程
1
数据流
2
功能架构
3
Elastic k-Nearest Neighbor (kNN) Search
k 最近邻 (kNN) 算法对密集向量类型的字段执行相似性搜索。这种类型的搜索更合适地称为“近似 kNN”,接受向量或嵌入作为搜索项,并查找索引中接近的条目。以下图片来自Elastic官方

实践
将之前收集到政策相关事项docx文件,195个文档上传知识库,包含 事项要素,材料模板,审查样表 的docx文档,其中审查样表部分docx包含图片
如下是已经导入完成
解析完成后
数据管理可查看导入文档详情
创建索引
知识库管理
知识库基于向量存储ElasticSearch
已经自动切片
命中测试
应用配置 对应知识库
测试对话
前端UI编写
最终我们看到 综合窗口的AI助手
智能AI对话与咨询
示例2
示例3
我们可以看HTTP 请求响应体
第二部分
总结
我们看到电子政务网上大厅综合窗口接件基于RAG实现准确智能助手。RAG技术在多个领域具有广泛的应用前景,包括但不限于问答系统、文本摘要、对话系统、企业信息库建设、AI文档问答、业务培训、科研等场景。通过结合检索和生成两种技术,RAG技术为这些领域提供了更加高效、准确和可靠的解决方案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。