安装Ollama
访问官网:
打开浏览器,前往Ollama官方网站。页面如下:
下载安装包:
- 在官网页面,依据电脑操作系统类型,如Windows、MacOS或Linux,选择对应的安装包进行下载。
点击下面的按钮,这里选择自己的电脑的版本,我这里是windows的
之后就会进行下载了。
当然,如果官网下载比较慢的话,可以通过百度网盘获取
链接: https://pan.baidu.com/s/1970Py8uuLmCLWMozRV0UJw?pwd=chuv 提取码: chuv
安装Ollama:
下载完成后,双击安装包启动安装程序。按照安装向导的提示逐步完成安装。
验证安装:
打开电脑的命令提示符(CMD)或终端,输入“ollama help”并按下回车键。若软件安装成功,将不会显示任何错误信息。
下载DeepSeek模型
- 访问Ollama官网模型页面:再次回到Ollama官网。https://ollama.com/search
- 搜索Deepseek-r1:在网页上方的搜索框中输入“Deepseek-r1”进行搜索。
- 选择模型规模:点击搜索结果中的Deepseek-r1进入详情界面,根据电脑的硬件配置,参考模型大小配置参考表格,选择合适的模型规模,范围从1.5b到671b。
这里的 “1.5b”“7b” 等中的 “b” 通常代表 “billion”(十亿),指的是模型的参数数量。
参数数量是衡量语言模型规模的一个重要指标,参数越多,模型通常能够学习和表示更复杂的知识和语言模式,但同时对计算资源的需求也更高。以下是不同参数规模对应可能的电脑配置(仅供参考,实际可能因具体应用场景等有所不同):
模型参数规模 | CPU | GPU | 内存 | 存储 |
---|---|---|---|---|
1.5b | 多核高性能 CPU(如 Intel Core i7 及以上或 AMD Ryzen 7 及以上) | 显存 4GB 及以上的中低端 GPU(如 NVIDIA GeForce GTX 1050Ti 等) | 16GB 及以上 | 50GB 及以上 |
7b | 多核高性能 CPU(如 Intel Xeon 系列或 AMD EPYC 系列等) | 显存 8GB 及以上的中高端 GPU(如 NVIDIA GeForce RTX 2070 等) | 32GB 及以上 | 100GB 及以上 |
8b | 多核高性能 CPU(如 Intel Xeon 系列或 AMD EPYC 系列等) | 显存 8 - 12GB 的中高端 GPU(如 NVIDIA GeForce RTX 3070 等) | 32GB 及以上 | 100GB 及以上 |
14b | 多核高性能 CPU(如 Intel Xeon Platinum 系列或 AMD EPYC 7000 系列等) | 显存 16GB 及以上的高端 GPU(如 NVIDIA A10 等) | 64GB 及以上 | 200GB 及以上 |
32b | 多核高性能 CPU(如 Intel Xeon Platinum 系列或 AMD EPYC 7000 系列等) | 显存 32GB 及以上的高端 GPU(如 NVIDIA A100 等) | 128GB 及以上 | 500GB 及以上 |
70b | 多核高性能 CPU(如 Intel Xeon Platinum 系列或 AMD EPYC 7000 系列等) | 多块显存 32GB 及以上的高端 GPU(如多块 NVIDIA A100 等) | 256GB 及以上 | 1TB 及以上 |
671b | 超级计算机级别的 CPU 集群 | 大规模 GPU 集群(如多组 NVIDIA A100 组成的集群) | TB 级 | 数 TB 及以上 |
- 复制下载命令:在选定的模型规模右侧,复制页面提供的下载命令。
- 下载模型:回到命令提示符窗口或终端,将刚刚复制的命令粘贴到窗口中,然后按下回车键,模型便会开始下载。
在windows搜索命令提示符,
然后执行刚刚复制的:ollama run deepseek-r1:1.5b
等待下载完成即可。
之后就可以进行提问了
配置可视化图文交互界面Chatbox
- 访问Chatbox官网:打开浏览器,访问Chatbox官方网站。
- 选择使用方式:Chatbox提供本地客户端和网页版两种使用方式,可按需选择。
不过我们还是选择下载到本地的方式,放在桌面方便我们的使用。
下载成功之后,双击进行安装
选择安装路径,这里忘记截图了。
下一步之后,就安装完成了,点击完成即可。
如果下载比较慢的话,可以从百度链接获取
通过网盘分享的文件:Chatbox-1.9.1-Setup.exe
链接: https://pan.baidu.com/s/1ldrrMsjHiY_GHilkzMdOIw?pwd=4db4 提取码: 4db4
- 选择模型提供方:在Chatbox中,点击“使用自己的API Key或本地模型”,进入模型提供方选择界面后,选择“Ollama API”。
- 配置Ollama远程链接:根据Chatbox提供的教程进行配置,对于Windows操作系统,通常需要配置环境变量并重启Ollama程序。
- 选择DeepSeek模型:重启Ollama程序后,关闭并重新打开Chatbox设置界面,在设置界面中选择DeepSeek模型,然后点击保存。
- 新建对话并使用模型:在Chatbox中新建对话,即可开始使用DeepSeek模型。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。