西湖大学工学院姜汉卿教授团队与美国西北大学生物电子研究所John Rogers教授团队、大连理工大学工程力学系解兆谦教授团队以及西北大学机械工程系黄永刚教授团队共同合作研发了一种新型的多模态触觉模拟方法及智能穿戴装置,相关研究工作以“Bioelastic state recovery for haptic sensory substitution”为题发表于《Nature》。
人类皮肤中丰富的机械感受器为信息传递和感知提供了多功能界面,研究者们正努力开发快速、可编程的感受器激活系统,以满足医疗和多个关键行业的迫切需求。然而,集成多种形式力反馈的触觉模拟方法是亟待解决的研究难题,开发高度适应性和可穿戴性的系统也面临诸多挑战。
西湖大学工学院姜汉卿实验室的这一合作研究展示了一种新型的生物弹性触觉模拟换能器(transducer),通过皮肤机械能量的储存与恢复,实现了高效的多模态触觉模拟及反馈。
用于多模态触觉反馈的生物集成双稳态换能器阵列
本研究采用了一种创新的生物弹性双稳态机制,结合电磁结构与皮肤的能量储存特性,实现了双稳态结构的快速切换,开发了一种高效的多模态触觉反馈换能器集成装置。
换能器机械表征及皮肤在维持双稳态中的作用
本研究创新性地对Kresling 折纸进行了曲线结构设计,有效解决了折叠过程中折纸内部空间小的难点,从而利用曲线折纸结构力学特性及其内部的换能器实现了对皮肤的剪切力触觉模拟。
曲线折纸结构设计
该研究所集成的换能器阵列能够实现多种触觉反馈形式,包括静态按压、动态振动以及动静态扭转反馈。实验结果表明该系统可有效产生动态与静态的法向力和剪切力触觉刺激,传递多种刺激组合信息。
换能器的振动触觉及扭转触觉模拟
换能器阵列有效性验证
该研究验证了用户对换能器振动触觉刺激的有效感知,探索了不同扭转角度对皮肤感知强度的影响,证明了用户能够有效地分辨按压和扭转触觉刺激以及分辨多点扭转触觉刺激。
振动触觉刺激及扭转触觉刺激的用户研究
研究团队还对两种触觉模拟单元装置进行了小型化设计和验证。机械表征结果显示,高度优化至2.1毫米(松弛状态为4.1毫米)的换能器单元,其在2毫米压痕下的性能与原始设计相当,验证了集成装置小型化的可行性。
两种触觉模拟单元的小型化及有效性
该研究针对环境感知反馈、姿势平衡改善及脚步定位反馈进行了用户任务测试,实验结果表明,该智能反馈装置能够实时、有效地帮助视觉或位置感知障碍人士进行运动调整。本研究为生物医学和多模态触觉模拟反馈技术开辟了新的视角,展现了在生物医学应用和虚拟现实等行业中的巨大潜力。
多模态触觉模拟系统及应用验证
应用案例1:蒙眼受试者利用该智能反馈系统穿越障碍路线的导航策略
应用案例2:蒙眼受试者利用该智能反馈系统定位椅子的导航策略
本研究的第一作者为西北大学博后Matthew T. Flavin,现任乔治亚理工学院助理教授,西湖大学工学院助理研究员郭增荣为共同第一作者,主要负责扭转触觉模拟研究及相关工作,姜汉卿团队的科研助理黄毅等也参与到项目中。西北大学John Rogers教授、西湖大学姜汉卿教授、大连理工大学解兆谦教授及西北大学黄永刚教授,为本研究共同通讯作者。该工作得到了国家自然科学基金委原创项目支持,以及西湖大学未来产业研究中心和西湖教育基金的资助支持。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。