第一章:相关名词解释
- IBP Demand
-
定义:IBP Demand是集成业务规划(Integrated Business Planning, IBP)中的需求规划模块。它专注于销售预测和销售订单管理,通过分析历史销售数据、市场趋势、季节性因素等,来制定更准确的需求计划。
-
作用:IBP Demand帮助企业更好地理解市场需求,提高销售预测的准确度,为供应链的其他环节提供可靠的需求输入。
- IBP
-
定义:IBP即集成业务规划,是一种跨职能的供应链规划方法。它集成了销售、市场、运营、采购、财务等多个部门的数据和计划,以实现供应链的全局可视化和协同优化。
-
作用:IBP通过集中管理和优化整个供应链的需求、库存、生产和分销等环节,提高供应链的响应速度和效率,降低运营成本,并增强企业的市场竞争力。
- S&OP
-
定义:S&OP即销售与运营计划(Sales and Operations Planning),是IBP中的一个核心流程。它涉及销售、市场、运营和财务等多个部门之间的协同,旨在确保供应链中的各个环节能够协同工作,以满足市场需求并优化资源分配。
-
作用:S&OP通过定期召开跨部门会议,回顾销售预测、库存状况、生产能力等关键指标,制定共识性的销售与运营计划,以平衡供需关系,减少过剩库存和缺货成本。
- R&S
-
定义:在供应链上下文中,R&S可能指的是需求与供应的审查(Review and Sourcing)流程,这是S&OP流程中的一个环节。它涉及对需求和供应的详细审查,以确保计划的可行性和准确性。
-
作用:R&S流程帮助企业在制定S&OP计划时,更全面地考虑各种需求和供应因素,包括原材料供应、生产能力、运输能力等,从而提高计划的可靠性和执行力。
- PPDS
-
定义:PPDS即生产规划与详细排程(Production Planning and Detailed Scheduling),是SAP系统中的一个模块,用于支持企业的生产计划和排程工作。
-
作用:PPDS通过综合考虑产能、物料、订单要求等多种约束条件,生成详细的生产计划和排程,以指导企业的生产活动。它可以帮助企业优化生产流程,提高生产效率,降低生产成本。
- AATP
-
定义:AATP即可用承诺量(Available-to-Promise),是企业在销售订单管理中用于评估订单可交付能力的一个指标。它表示在特定时间内,企业能够承诺交付给客户的产品数量。
-
作用:AATP帮助企业更准确地评估订单的交付能力,避免过度承诺导致的交付延迟或违约风险。同时,它也可以作为销售人员在与客户谈判时的有力工具,提高客户满意度和订单成交率。
第二章:基于SAP IBP+PPDS的端到端供应链计划方案
总体方案描述
-
需求计划通过IBP Demand,进行系统支撑,完成历史数据的收集、整理与分析,辅助得到更准确的需求计划;
-
产销平衡通过IBP S&OP与R&S,对流程支撑、管控、追踪,辅助各层级、各部门间的协同,提高效率;
-
供应计划通过PPDS,考虑生产与采购计划中的各类约束条件和管控目标;
-
订单承诺通过PPDS+AATP,以数据为支撑地完成更灵活的订单答交与管理;
-
供应链全局可视通过IBP与PPDS结合,从战略层、战术层、运营层,多层级协同的可视;
价值提升
-
优化需求计划,预测计划的闭环管理与准确度的不断提升;
-
固化业务流程,供应链计划的高效协同与响应度的提升;
-
供应链建模、数据及时与共享,供应链全局可视与KPI管理;
第三章:端到端供应链计划体系方案
1. 销售预测计划(Sales Forecast Planning)
1.1 数据集成与清洗
-
数据源整合:集成历史销售数据、市场趋势数据、客户行为数据等多源数据。
-
数据清洗与预处理:去除异常值、填补缺失值,确保数据质量。
1.2 预测模型构建
-
时间序列分析:利用ARIMA、Prophet等模型预测未来销售趋势。
-
机器学习模型:应用随机森林、神经网络等算法,结合市场因素进行预测。
-
情景分析:构建不同市场情景下的销售预测,以应对不确定性。
1.3 预测结果应用与调整
-
预测结果发布:将预测结果以可视化形式呈现给相关部门。
-
动态调整机制:根据市场反馈和实际情况,定期调整预测模型及参数。
2. S&OP(Sales & Operations Planning)产销协同
2.1 跨部门协同机制
-
组织架构调整:建立跨部门S&OP团队,包括销售、生产、采购、物流等关键部门。
-
定期会议制度:设立月度/季度S&OP会议,确保信息同步与决策协同。
2.2 需求与供应平衡
-
需求预测整合:汇总销售预测、客户订单等需求信息。
-
供应能力评估:分析产能、库存、原材料供应等供应端资源。
-
供需匹配与调整:通过模拟分析,优化供需平衡,制定产销计划。
2.3 绩效评估与反馈
-
KPI体系建立:设定如预测准确率、库存周转率、订单满足率等关键绩效指标。
-
绩效评估与反馈:定期评估S&OP计划执行效果,根据评估结果进行调整。
3. 物料计划(Material Planning)
3.1 物料需求预测
-
基于销售预测的需求预测:根据销售预测结果,计算物料需求。
-
安全库存策略:制定合理的安全库存水平,以应对需求波动。
3.2 物料采购与库存管理
-
供应商管理:评估供应商能力,建立长期合作关系。
-
采购计划制定:根据物料需求预测,制定采购计划。
-
库存优化:运用JIT(Just-In-Time)、VMI(Vendor Managed Inventory)等策略优化库存。
3.3 物料流动监控
-
物料追踪系统:建立物料追踪系统,实时监控物料流动情况。
-
异常处理机制:对物料短缺、过期等异常情况进行及时处理。
4. 生产计划(Production Planning)
4.1 生产能力规划
-
产能评估与调整:根据销售预测和订单情况,评估并调整生产能力。
-
生产线布局优化:通过精益生产等方法优化生产线布局,提高生产效率。
4.2 生产排程与调度
-
生产排程:利用PPDS(Production Planning Detailed Scheduling,PPDS)系统制定详细生产排程。
-
生产调度:根据生产实际情况,灵活调整生产调度,确保生产顺畅。
4.3 质量控制与追溯
-
质量控制体系:建立严格的质量控制体系,确保产品质量。
-
产品追溯系统:建立产品追溯系统,对产品质量问题进行追溯和分析。
5. 订单响应(Order Response)
5.1 订单处理流程优化
-
订单接收与确认:建立快速响应的订单接收与确认机制。
-
订单处理自动化:通过自动化工具提高订单处理效率。
5.2 交货期承诺与管理
-
交货期评估:根据生产计划和库存情况,准确评估交货期。
-
交货期管理:对交货期进行跟踪和管理,确保按时交付。
5.3 客户服务与沟通
-
客户服务体系:建立完善的客户服务体系,提供订单查询、投诉处理等服务。
-
客户沟通机制:建立定期客户沟通机制,了解客户需求和反馈。
6. 供应链可视控制塔(Supply Chain Visibility Control Tower,SCCT)
6.1 数据集成与可视化
-
数据集成平台:建立供应链数据集成平台,整合各环节数据。
-
数据可视化:通过图表、仪表盘等形式展示供应链关键指标和数据。
6.2 实时监控与预警
-
实时监控系统:建立供应链实时监控系统,对关键节点进行监控。
-
预警机制:设置预警阈值,当供应链出现异常时及时发出警报。
6.3 决策支持与优化
-
数据分析与挖掘:对供应链数据进行深入分析和挖掘,发现优化空间。
-
决策支持系统:建立决策支持系统,为供应链管理者提供数据驱动的决策建议。
本方案构建了一个全面、系统的端到端供应链计划体系,旨在提高供应链的响应速度、降低运营成本、提升客户满意度,并为企业创造更大的价值。
第四章:价值分析
一、全面打造供应商、某克和客户的全链条供应链
通过实施SAP IBP(集成业务规划)和PPDS(详细计划与排程)解决方案,某克缝纫机能够全面打造供应商、某克和客户之间的全链条供应链。这一方案的核心价值在于:
- 需求计划系统管理:
-
通过IBP Demand模块,某克能够实现需求计划的系统化管理,提高预测的准确性,并形成供应链闭环。
-
系统能够自动收集、整理和分析历史数据,辅助生成更精准的需求计划。
- 产销协同优化:
-
IBP S&OP(销售与运营计划)模块支持从需求端到供应端的完整流程,确保各部门之间的高效协同。
-
通过供需两端的拉通,实现信息的共享互动,共同提高计划准确度。
- 供应计划精细化管理:
-
PPDS模块考虑生产与采购计划中的各类约束条件和管控目标,制定更为精细的生产排产计划。
-
采购计划与生产计划紧密结合,互相作用,出具具有约束性的供应计划。
- 订单承诺与管理:
-
通过PPDS与aATP(可用承诺)功能模块的结合,杰克能够基于数据支撑完成更灵活的订单答交与管理。
-
订单承诺过程更加透明和高效,提升了客户满意度。
- 供应链全局可视:
-
IBP与PPDS的结合实现了从战略层、战术层到运营层的多层级协同可视。
-
供应链控制塔提供实时的、全方位的监控与可视分析,帮助企业快速响应市场变化。
- KPI管理与优化:
-
系统支持预置和自配置的各类分析指标与报表,从多个维度支撑并辅助各级决策管理。
-
通过数据驱动的管理,某克能够不断优化供应链运营指标,提升整体运营效率。
二、多维度全面支撑整体端到端的供应链计划体系
SAP IBP+PPDS解决方案从多个维度全面支撑某克缝纫机的整体端到端供应链计划体系,具体包括:
- 一体化产销协同能力:
-
构建产销协同平台,支持基于条件规则和资源约束的产销平衡,提升协同效率。
-
通过预警监控与决策分析,实现供应链的智能化管理。
- 高级生产计划与采购计划:
-
PPDS模块提供高级生产计划与采购计划功能,支持有限能力和物料限制性排产。
-
系统能够灵活满足业务排产要求,实现计划与执行的紧密衔接。
- 计划管理流程优化:
-
实现年、月、周、日的计划联动,提升多时间维度的计划管理响应速度。
-
打通ERP、APS、SRM、MES等多系统边界,消除数据孤岛,提升部门间协作效率。
- 多基地生产计划整合:
-
整合并优化多基地生产计划,实现集团层面的最优中央计划管理。
-
实现各基地间产成品、半成品、原材料的统一计划,加强供应链管控。
- 需求计划流程完善:
-
建设营销体系的需求计划,通过系统支撑完善需求计划流程,提升销售预测准确度。
-
建立供应链计划预警监控平台,实现对供应链端到端的实时监控和预警。
通过实施SAP IBP+PPDS解决方案,某克缝纫机能够全面提升供应链管理的智能化、协同化和可视化水平,打造更加高效、灵活和可持续的供应链体系。
第五章:案例分享
一、飞利浦照明(昕诺飞)
-
业务挑战:计划过程存在断点,无法同步;供应审核加快但供应瓶颈分析不足;资源配置不合理导致短缺。
-
解决方案:通过SAP IBP制定合理、持续的供应链计划,有效平衡供需;建立S&OP流程,构建端到端供应链规划生态系统。
-
收益:提高响应速度和准确性;为子业务单元提供数据和决策支持;提升跨职能协作效率。
二、大疆无人机
-
业务挑战:计划过程依赖电子表格,无法有效协同;供应能力不足,资源配置不合理。
-
解决方案:通过SAP IBP建立供应链计划平台,整合内外部数据,提高协同效率;建立供需模拟能力。
-
收益:制定合理、持续的供应链计划;提高响应速度和准确性;优化资源配置,减少短缺。
三、世迈科技
-
业务挑战:计划体系孤立、手工、低效;无法满足企业营收规模扩大的需求。
-
解决方案:通过SAP IBP建立标准化的、智能化的计划平台,拉通从需求到供应的流程;建立KPI管理机制。
-
收益:提高计划过程中的协同效率;保证KPI的共识与不断完善;提升整体运营水平。
四、微软
-
业务挑战:库存健康度差,SKU层预测准确率低;系统维护复杂,人工成本高。
-
解决方案:通过SAP IBP实现高级监控和自动的SKU级别计划。
-
收益:提升库存健康度,减少错误库存种类;提高SKU层预测准确率;降低系统维护成本和人工操作量。
五、博西家电
-
业务挑战:供应链复杂度高,需求波动大,计划协同困难。
-
解决方案:通过SAP IBP实现供应链的全局可视和协同优化,提高需求预测准确性。
-
收益:提升供应链响应速度,降低库存成本,提高客户满意度。
六、西门子电站
-
业务挑战:生产调度不流畅,接口复杂度高,计划灵活性差。
-
解决方案:通过SAP PPDS实现优化生产调度,减少接口复杂度。
-
收益:提高计划流程的透明度,优化生产计划,实现灵活的计划管理,减少提前期和监控工作量。
以下为方案概览,仅展示部分内容******>>******
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。