Int J Biol Macromol|吉林大学韩葳葳教授团队:利用大语言模型高准确率预测激酶-抑制剂的亲和力

在药物研发和生命科学研究中,预测激酶与抑制剂之间的亲和力至关重要。近年来,基于深度学习的方法在蛋白质和配体的亲和力研究取得了重大进展。然而,传统的深度学习方法预测亲和力需要大量亲和力数据,甚至需要大量结构信息以及其他化学信息进行训练,但仍存在预测结果准确度低的问题。

2024年11月,吉林大学韩葳葳教授团队在International Journal of Biological Macromolecules上发表文章GPT4Kinase: High-accuracy prediction of inhibitor-kinase binding affinity utilizing large language model。

作者提出应用大语言模型GPT-4的方法(GPT4Kinase)预测激酶与抑制剂的亲和力,利用其强大的上下文学习(In-Context Learning, ICL)和自注意力机制(Self-Attention)实现小样本训练的高效预测。该方法不仅实现激酶与抑制剂亲和力的预测,还可提供对抑制剂中关键化学基团的分析。通过对比分析,GPT4Kinase在预测亲和力的任务中超越现有传统方法。

如图1所示,研究的核心工作流程分为三部分。第一部分,作者对激酶和抑制剂的数据处理,包含抑制剂SMILES、激酶结合域序列和Kd值。重要的是,为了评估 GPT-4 预测亲和力的准确性,作者根据Kd值对数据进行了标签化处理。

图1 工作流程

第二部分,作者利用GPT-4执行特定的预测任务:基于Kd值的分类预测激酶和抑制剂之间的亲和力以及识别高亲和力和低亲和力抑制剂的关键功能集团。此部分的关键技术是提示工程(prompt engineering)的使用。它需要设计和改进以有效地指导GPT-4高效准确地执行指定的任务即预测激酶和抑制剂之间的亲和力。

第三部分,作者将GPT4Kinase与一些代表性方法(Autodock Vina、BatchDTA 和 KIPP)进行比较,使用一系列性能指标严格评估预测结果,如表1所示。GPT-4模型在RAF数据集上的预测准确度达到87.31%,在整体数据集上的准确度为77.00%,明显优于现有方法:AutoDock Vina(21.21%)、BatchDTA(52%)和KIPP(59.60%)。此外,研究还使用混淆矩阵和小提琴图来可视化不同方法的预测效果。

表1 GPT4Kinase与其他方法对比

此外,GPT4Kinase不仅在亲和力预测中表现出色,在识别抑制剂关键功能基团方面也展现了卓越的准确性。为了更深入了解GPT-4输出的不同亲和力抑制剂与激酶的相互作用以及关键基团,作者使用分子对接验证不同标签抑制剂与激酶的相互作用,从而直观地分析GPT-4输出的关键功能基团,如图2所示。分子对接验证了GPT-4预测的功能基团在与激酶结合位点的关键非共价相互作用中起到重要作用。

图2 分子对接结果分析

为验证GPT4Kinase在预测各种激酶及其抑制剂之间的亲和力方面的通用性,作者应用GPT4Kinase对多种激酶的数据集以及代表特定激酶的数据集进行了预测,如图3所示。这种比较分析突出了GPT4Kinase在不同激酶谱中的性能和一致性,展示了其在广谱和特定激酶与抑制剂相互作用中的应用潜力。

图3 A:多激酶数据集LogKd 值散点图;B:GPT4Kinase在激酶-抑制剂亲和力预测中的评估指标热图

在本文中,作者提出GPT4Kinase用于预测MAPK通路中激酶和抑制剂的亲和力。与传统方法相比,GPT-4预测结果的准确率和其他指标都非常出色。作者还利用多种激酶验证其广谱适用性,并获得良好的评估指标。作者以激酶和抑制剂为例,证明了GPT-4通过输入蛋白质序列和小分子SMILES能够高效预测蛋白质-配体亲和力,为实验科学家提供了更便捷和高效的分子筛选工具,推动了小分子与生物大分子亲和力预测领域的进步。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值