随着人工智能技术的飞速发展,AI大模型在医疗领域的应用正迎来前所未有的发展机遇。AI大模型以其强大的数据处理和学习能力,正在逐步改变医疗行业的面貌,从患者问诊、辅助诊断到药物研发,再到医院管理,AI大模型正全方位赋能医疗行业,推动其向智能化、精准化方向转型。
·AI大模型在医疗领域的应用·
1. 患者问诊与智能诊疗
AI大模型通过整合海量医疗文献、临床案例和健康知识等数据,提炼出行业垂直大模型,如APUS岐黄大模型。这类模型可以广泛应用于医疗知识库构建、智能诊疗平台搭建、AI数字医生、智能评价体系建设等场景。在河南省儿童医院,APUS医疗大模型自上线以来,迅速成为该院的明星服务项目,为数以万计的患者提供了精准的健康咨询服务、个性化治疗推荐、智能分诊、诊中提醒等服务,有效缓解了医疗资源紧张状况,提高了就诊效率。
2. 辅助诊断与精准医疗
AI大模型在辅助诊断方面也有着卓越的表现。例如,医准智能推出的YiZhun Ultrasound GPT,基于多模态数据打造的超声医学大模型,能够赋能超声影像智能化升级,更快速、更多维度地拓展动态实时超声AI应用场景,提升诊断和治疗效率。此外,百度发布的灵医大模型,能够结合自由文本秒级生成结构化病历,并根据医患对话精准分析生成主诉、现病史等内容,实时辅助医生确诊疾病,推荐治疗方案。
3. 药物研发与临床实验
AI大模型在药物研发和临床实验中的应用同样引人注目。华为云与中国科学院上海药物研究所联合推出的盘古药物分子大模型,实现了针对小分子药物全流程的人工智能辅助药物设计。百度与北京市计算中心合作,利用百度飞桨螺旋桨PaddleHelix生物计算平台提供的文心生物计算大模型技术,对多年来积累的高质量“药物虚拟筛选数据库”的化合物进行了数据挖掘和过滤,显著提升了药物虚拟筛选的效率和准确性。
4. 医院管理与智慧医疗
AI大模型还在医院管理和智慧医疗方面发挥着重要作用。云知声基于山海大模型打造的门诊病历生成系统,能够智能筛选出与病情无关的对话,自动抓取并结构化处理关键问诊信息,大幅提升了病历书写的效率。而首信红砥大模型则赋能医保行业,通过“首都信息医保数字人”提供自然语言交互能力,实现为参保企业和市民答疑解惑,帮助解读医保政策,有效赋能基层服务人员。
·AI大模型在医疗领域的未来展望·
根据市场研究机构的预测,到2025年,全球医疗大模型市场规模将达到38亿美元,并有望在2030年突破100亿美元。这一增长不仅受到社会人口老龄化加剧、慢病患者低龄化显现等问题的影响,更得益于AI大模型在医疗行业中的广泛应用和显著成效。
未来,AI大模型将继续深化在医疗领域的应用,推动医疗行业的智能化转型。随着技术的不断进步和应用场景的不断丰富,AI大模型将在提高诊疗效率、诊疗精确度和管理效率等方面发挥更大作用,全方位提高诊疗水平,为患者提供更加便捷、高效的医疗服务。
·结 语·
AI大模型正在医疗领域掀起一场智能化革命,从患者问诊到辅助诊断,从药物研发到医院管理,AI大模型正在全方位赋能医疗行业。随着技术的不断进步和应用场景的不断拓展,AI大模型将在医疗领域发挥越来越重要的作用,为人类的健康事业贡献更多智慧和力量。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。