引言
基于传统危险因素的风险预测模型虽然也能够有效的区分未来低风险和高风险的个体,但由于缺乏特异性和对复杂风险因素的不完整描述,临床适用性受到限制。
因此越来越多的学者引入蛋白质组学、循环代谢物等分子层面信息作为预测因子提高模型的准确度,但一般来说,蛋白质、循环代谢物等种类繁多。要纳入构建预测模型,自变量筛选成了一大难题。
今天老郑看到一篇Lancet子刊的文章,也是第一次看到这种筛选自变量的方法,从249种代谢物中筛选了11种纳入预测模型,老郑带大家一起看看!
2024年12月6日,顶刊Lancet子刊《eClinicalMedicine》(医学一区top,IF=9.6)发表了一篇题为:“Novel type 2 diabetes prediction score based on traditional risk factors and circulating metabolites: model derivation and validation in two large cohort studies”的研究论文,旨在评估在临床使用的剑桥糖尿病风险评分(CDRS)基础上添加代谢组学生物标志物对评估2型糖尿病10年风险的增量预测价值。
如果你需要全文,请公众号后台回复关键词“pdf”。如果你对预测模型感兴趣,来看看我们**临床预测模型服务吧,一对一指导!**详情可咨询助教,微信号:aq566665
研究设计
在这项研究中,研究者用了两个大型队列研究推导和验证预测模型。
-
模型推导和内部验证:纳入了86,232名英国生物银行(UKB)参与者(在2006年3月13日至2010年10月1日期间招募),将队列拆分为训练集(70%)和测试集(30%)。
-
外部验证:纳入了4383名来自德国ESTHER队列的参与者(在2000年7月1日至2002年6月30日期间招募)。
研究人员对参与者进行了10年的随访,以评估2型糖尿病的发病率。
图1 参与者纳排流程图
√CDRS是一种预测工具,用于评估个人未来发展为2型糖尿病的风险。
这个评分系统包括年龄、性别、身体质量指数(BMI)、糖尿病家族史、吸烟状况、抗高血压药物和类固醇的处方。如果可以采集血液样本,建议使用临床CDRS,其中还包括HbA1c。
√代谢组学分析
Nightingale Health的高通量NMR代谢组学平台用于测量随机选择的UKB参与者基线血浆样本中的250种代谢物,以及ESTHER队列中具有足够血液样本质量的所有基线血清样本。
因为在两个队列的大多数参与者中甘油无法测量,甘油被排除在外,留下249个代谢物用于分析。
自变量它是如何筛选的
本文的自变量筛选很有意思,为了进行变量选择,研究者采用了LASSO方法,使用Cox比例风险模型和r包“glmnet”(版本4.1-7)。将临床CDRS和所有代谢物浓度作为自变量,2型糖尿病发生率作为因变量。
在训练集内,研究者进行了1000个重抽样样本的bootstrap过程,以增强变量选择过程的稳定性和泛化性。
-
对于每个bootstrap样本,我们进行10次交叉验证,以识别正则化参数λ的最佳值,使交叉验证误差最小化。
-
LASSO Cox比例风险模型在每个重抽样的样本中使用最优λ进行拟合,这使一些系数接近于零,而其他系数完全接近于零。
-
我们记录了在每个bootstrap样本的最终Cox比例风险模型中具有非零系数的代谢物,这些代谢物被选择。
-
完成所有的1000个bootstrap样本后,我们计算这1000个bootstrap样本中每个代谢物的选择频率,作为它被选择的次数的百分比。
随后根据代谢物的选择频率进行排序,范围从0%到100%。
在1000个bootstrap样本中,LASSO选择的代谢物至少有95%(这个阈值之前已经给出)是被选择的,可以增强模型的泛化能力并最小化模型过拟合。将筛选出的代谢物纳入临床CDRS构建新的预测模型。
最终,通过LASSO分析和bootstrapping法,研究者选择了11种代谢物来增强训练集中临床CDRS对2型糖尿病风险的预测能力。
图2 11种代谢物的Pearson相关系数相关矩阵
如何理解它的自变量筛选
全套过程,我想大家看得眼花缭乱,但确实做到了“增强变量选择过程的稳定性和泛化”的目的。
基于lasso的方法筛选自变量是常规套路,但lasso的方法存在不确定性,或者存在着过拟合的可能性。
一般来说我们干完lasso就结束了。它不!这篇论文在lasso基础上用了一些其他方法。
一个是实现泛化性,用的是十折交叉方法,那就可以减少过拟合的方法,哪个场景下模型验证效果最好的,意味着泛化能力最强,这个时候的lasso模型是最好的。
第二个是实现稳定性,lasso结果不稳定怎么办?那就来1000次,1000个lasso方法95%都存在着的自变量。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。