一、引言
在人工智能技术快速迭代的今天,我们正见证着 AI 应用模式的多元化发展。
其中,AI Agent 和 AI Workflow 作为两种截然不同的范式,正在重塑我们对 AI 应用的认知。
这两种模式就像是同一枚硬币的两面 —— 一个追求灵活创新,另一个注重稳定高效。
今天正好在群里有位朋友问到AI Workflow 工作流和AI Agent智能体的区别,我们就来深入剖析下这两种模式的本质区别、应用特点和未来发展趋势,帮助初学者更好地理解和运用这些 AI 技术。
二、AI Agent 和 AI Workflow 的区别
1. 定义与功能
AI Agent :AI Agent 是一个具有自主意识的智能实体,它能够感知环境、进行推理决策,并采取相应行动。
就像一位能干的私人助理,它不仅能执行指令,更重要的是能够理解任务背景、制定执行计划,并在遇到问题时灵活调整策略。
AI Agent 的核心在于其自主学习和决策能力,它能够通过不断积累经验来优化自己的行为模式。
AI Workflow :AI Workflow 则更像是一条智能化的生产线,它由一系列预定义的、具有明确顺序的任务步骤组成。
每个步骤都有清晰的输入和输出规范,整个流程高度结构化且可预测。
它的设计初衷是将复杂的业务流程标准化和自动化,确保任务能够按照既定的规则和顺序高效执行。
2. 自主性与灵活性
AI Agent 的特点
-
高度的自主决策能力
-
环境适应性强,能够处理不确定性
-
具备学习能力,可以通过经验优化行为
-
能够与其他 Agent 或人类协作
-
可以根据情境动态调整策略
AI Workflow 的特点
-
预定义的执行路径
-
标准化的处理流程
-
可控性强,结果可预测
-
高效的任务处理能力
-
适合处理结构化、重复性任务
3. 应用场景
AI Agent 典型应用
-
智能客服:能够理解客户多样化的需求,灵活调用知识库,提供个性化服务
-
智能家居:根据用户习惯、环境变化自适应调节家居设备
-
自动驾驶:实时感知路况,做出驾驶决策,确保行车安全
-
金融交易:分析市场行情,自主进行投资决策
-
医疗诊断:综合分析病患数据,辅助医生诊断决策
AI Workflow 典型应用
-
企业流程自动化:财务处理、人事审批、采购管理等
-
制造业质检:标准化的产品质量检测流程
-
数据处理:数据清洗、转换、分析的流水线作业
-
文档处理:自动化的文档分类、提取、归档
-
医疗影像分析:标准化的医学图像处理和分析流程
三、AI Agent 详解
1、AI Agent基本特征
感知能力 - Agent 的"眼睛和耳朵"
AI Agent 的感知能力就像是它的感官系统,使其能够"看"见和"听"见周围的世界。
这种能力不仅包括对数字信号的处理,还包括对复杂环境的理解和解读。
例如,在智能客服场景中,Agent 不仅要理解用户的文字内容,还要捕捉情绪特征,理解对话的上下文,甚至要能识别出用户的潜在需求。
先进的 AI Agent 往往具备多模态感知能力,可以同时处理文本、语音、图像等多种类型的输入信息。
比如自动驾驶系统就需要同时处理来自摄像头、雷达、GPS等多个传感器的数据,构建对道路环境的完整认知。
决策能力 - Agent 的"大脑"
决策能力是 AI Agent 的核心,这使得它能够像人类一样思考和规划。一个优秀的 AI Agent 需要具备:
-
快速推理能力:在面对突发情况时能够快速做出合理决策
-
长期规划能力:能够制定并执行多步骤的行动计划
-
风险评估能力:在决策过程中权衡各种可能的结果和风险
-
目标导向能力:始终围绕既定目标优化决策
举个例子,智能投资 Agent 在进行投资决策时,需要综合考虑市场趋势、风险因素、投资目标等多个维度,通过复杂的决策模型得出最优的投资策略。
执行能力 - Agent 的"手和脚"
执行能力让 AI Agent 能够将决策转化为实际行动。这包括:
-
精确的动作控制
-
实时的任务调度
-
灵活的策略调整
-
持续的效果评估
比如在智能制造领域,机器人 Agent 需要精确控制机械臂的运动轨迹,实时调整力度和速度,确保生产质量。
同时,它还要能够根据生产线的实际情况动态调整工作节奏,处理突发的异常情况。
2、AI Agent 的分类与特点
反应型 Agent - 快速决策的能手
这类 Agent 特别适合需要快速响应的场景。它们像经验丰富的专家一样,能够基于当前状况快速做出决策,而不需要复杂的推理过程。
例如:
-
高频交易系统:根据市场行情瞬间做出交易决策
-
游戏 AI:在电子游戏中实时响应玩家的操作
-
工业控制系统:对生产线异常情况进行即时处理
目标导向型 Agent - 战略规划专家
这类 Agent 擅长制定和执行长期策略,它们会:
-
明确设定目标并分解为可执行的子任务
-
制定详细的执行计划和时间表
-
持续监控进展并及时调整策略
-
评估结果并总结经验教训
比如一个智能营销 Agent,它会制定完整的营销策略,包括目标客户定位、渠道选择、内容创作、效果追踪等一系列环节,并根据市场反馈不断优化策略。
学习型 Agent - 成长型智能体
学习型 Agent 最大的特点是能够不断进化和提升。
它们通过:
-
从历史数据中总结经验
-
通过试错不断优化策略
-
模仿和学习其他 Agent 的成功经验
-
适应环境变化调整行为模式
例如,一个客服 Agent 可以通过分析大量的服务案例,学习更好的应对策略,逐渐提升服务质量和效率。
协作型 Agent - 团队合作能手
这类 Agent 特别适合需要多方配合的复杂场景。
它们的特点是:
-
具备良好的通信协调能力
-
能够理解和配合其他 Agent 的行为
-
可以动态调整自身角色和任务
-
促进群体智能的形成
在智能物流系统中,多个协作型 Agent 分别负责路线规划、库存管理、配送调度等不同任务,通过相互协作实现整体效率的最优化。
通过这些不同类型的 Agent,我们可以看到 AI 技术在实际应用中的多样性和灵活性。
每种类型的 Agent 都有其独特的优势和适用场景,选择合适的 Agent 类型对于解决具体问题至关重要。
而随着技术的发展,我们也看到越来越多的 Agent 开始具备多种类型的特征,能够更全面地满足复杂场景的需求。
四、深度解析AI Workflow
在人工智能快速发展的今天,工作流(Workflow)已经发展成为一种强大的业务流程处理方法。
它不仅仅是简单的流程自动化工具,更是一种将复杂业务逻辑系统化、智能化的解决方案。
通过将业务流程中的各个步骤和规则进行抽象化处理,并借助先进的计算机技术,工作流能够实现高效的自动化处理。
1、大模型时代的新挑战
随着大语言模型(LLM)技术的迅猛发展,我们面临着越来越复杂的任务处理需求。
传统的单次 LLM 调用方式已经无法满足这些复杂任务的需求。
正如一位经验丰富的工程师不会用单一工具解决复杂问题一样,处理复杂的 AI 任务同样需要更系统化的方法。
2、工作流的创新发展
为了应对这一挑战,人工智能领域的领军人物们提出了创新性的解决方案。
吴恩达(Andrew Ng)、伊塔马尔·弗里德曼(Itamar Friedman)和哈里森·蔡斯(Harrison Chase)等专家引入了"工作流"(Workflow)和"流程工程"(Flow Engineering)的创新理念。
这种方法不是简单地一次性调用 LLM,而是设计了一个多阶段、多步骤的交互过程,通过持续的反馈优化来提升任务处理的质量和效果。
3、工作机制与原理
工作流的生命周期
AI Workflow 就像是一座精密运转的智能工厂,将复杂的业务流程转化为有序高效的自动化作业。它的工作过程包含几个关键环节,每个环节都扮演着重要角色:
- 任务分解与流程设计
在这个阶段,系统架构师会像拆解积木一样,将复杂的业务流程分解成一个个独立的功能模块。比如在智能客服流程中,可能包括:
-
用户意图识别模块
-
知识库检索模块
-
回答生成模块
-
满意度评估模块
这种模块化设计不仅提高了系统的可维护性,还为后续的优化升级提供了便利。
- 规则引擎构建
规则引擎是 AI Workflow 的"大脑",它需要:
-
制定清晰的业务规则集
-
设计决策树和判断逻辑
-
配置参数阈值和触发条件
-
建立规则之间的优先级关系
例如,在金融风控系统中,规则引擎会包含数百个细化的业务规则,从基础的身份验证到复杂的交易行为分析,每个规则都经过精心设计和调优。
- 智能流程编排
这个阶段就像是编排一场精彩的交响乐,需要考虑:
-
任务节点之间的逻辑关系
-
数据流转的路径设计
-
并行处理的可能性分析
-
关键路径的优化处理
在医疗影像分析流程中,从图像采集、预处理、特征提取到诊断建议生成,每个环节都需要严格的时序控制和质量把关。
- 异常处理机制
优秀的 AI Workflow 必须具备强大的容错能力:
-
设计多层级的异常捕获机制
-
制定清晰的问题升级流程
-
建立完整的日志记录系统
-
准备多套备用方案
就像一个经验丰富的项目经理,能够预见可能出现的问题并提前准备解决方案。
- 持续监控与优化
这是一个不断进化的过程:
-
部署实时监控系统
-
收集关键性能指标
-
分析瓶颈环节
-
优化流程参数
通过数据驱动的方式,不断提升流程的效率和可靠性。
4、工作流的核心优势与特色
1. 卓越的执行效率 AI Workflow 通过标准化和自动化大幅提升处理效率:
-
并行处理能力显著提升吞吐量
-
自动化操作减少人工干预
-
智能调度优化资源利用
-
流程优化降低等待时间
2. 稳定可靠的质量保证 得益于严格的规则执行和质量控制:
-
标准化流程确保一致性
-
多重校验机制保障准确性
-
完整的追踪机制支持问题定位
-
持续的质量监控和预警
3. 灵活的扩展能力 系统设计充分考虑了未来的扩展需求:
-
模块化架构支持功能扩展
-
分布式部署实现横向扩展
-
接口标准化便于集成
-
配置化设计支持快速调整
4. 出色的可维护性 清晰的结构设计大大降低了维护成本:
-
模块独立便于问题定位
-
标准化接口简化维护工作
-
完整的文档支持快速理解
-
版本控制确保平滑升级
5. 显著的成本优势 通过智能化手段实现成本的优化:
-
减少人工操作成本
-
提高资源利用效率
-
降低错误处理成本
-
缩短流程处理时间
应用示例
以保险理赔流程为例,AI Workflow 可以:
1. 自动识别和分类理赔申请材料
2. 智能提取关键信息并验证
3. 根据保单条款自动评估赔付金额
4. 执行反欺诈检查和风险评估
5. 生成理赔决策建议
6. 触发后续的赔付流程
整个过程高度自动化,既保证了处理效率,又确保了评估的准确性和公平性。
通过这种方式,AI Workflow 在企业数字化转型中发挥着越来越重要的作用,为业务流程的优化和效率提升提供了强有力的技术支撑。它不仅是一个自动化工具,更是企业智能化升级的重要推手。
AI 工作流 vs AI 智能体:各显神通
虽然工作流(Workflow)和智能体(Agent)看似相似,但它们采用了截然不同的任务处理策略:
-
工作流采用"化繁为简"的方法,由人类专家精心设计任务拆解方案,确保每个步骤都经过优化和验证。这就像是一位经验丰富的项目经理,事先规划好每个环节,确保项目有条不紊地推进。
-
智能体则更像是一位能够独立思考的助手,它依靠强大的大模型能力,能够自主分析任务,动态规划执行步骤。这种方式更灵活,但可控性相对较低。
这两种方法各有优势,选择哪种方式取决于具体的应用场景和需求。工作流适合那些需要高度可控、标准化的场景,而智能体则更适合需要灵活应变的任务。
通过这种创新的任务处理方法,我们能够更好地驾驭 AI 技术,处理更复杂的任务,创造更大的价值。这不仅标志着技术的进步,更预示着 AI 应用进入了一个更加成熟的阶段。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。