一文学会基于LangChain开发大模型RAG知识问答应用

RAG全称是Retrieval-Augmented Generation,即检索增强生成。通俗来讲,就是在用户提的问题的基础上,引入相关资料信息,把“问题+相关资料” 一起给大模型,让大模型在参考资料的约束或提示下回答问题而不是随意发挥,从而期望大模型生成质量更高、更准确的答案,改善大模型”幻觉“、训练数据过时、 知识范围有限等带来的负面问题。

img

在涉及到专业领域知识或企业内部知识的应用场景中,这项技术发挥着重要作用。相比于大模型微调,RAG时间成本、经济成本和技术难度都更低。

本期内容涉及到以下知识点:

1.使用LangChain调用DeekSeek-v3模型服务

2.设计提示词模板,包括系统提示词用户提示词

3.加载知识库,具体来说是本地或在线文档

4.将知识库中的文档分割成chunks,即多个片段

5.使用阿里云百炼的text-embedding-v2模型做文本嵌入,然后将这些向量保存到向量数据库中,供之后检索使用,即indexing

img

6.使用BAAI/bge-reranker-large模型自定义LangChain的ReRank类,用于提升知识库检索结果的质量

7.设计输出解析器,LangChain中的输入输出一般不是简单的字符串,比如大模型输出的是AIMessage对象,我们需要将结果格式化为目标形式

8.构建LCEL链,chain是LangChain框架的核心特点

9.给链传入回调函数,用于在链运行时获取状态信息或执行业务逻辑等

LangChain对各种功能进行了封装,所以上述的内容虽然很多,但实际代码量却比较少。

代码基于当前LangChain的最新版本v0.3

向观智能公众号发送文件码 7330 即可获取本文相关文件

Python库版本信息如下,使用pip默认安装最新版本即可:

img

本期内容采用递进的方式展开。

大模型调用

LangChain可以接入本地模型和云服务模型,模型来源有OpenAI、DeepSeek、Anthropic、Hugging Face等等,可调用的模型十分丰富。

比如可以在DeepSeek开放平台上获取我们的API Key,用它来请求DeepSeek-v3的推理服务:(link=>https://platform.deepseek.com/)

img

img

这里在自定义的函数env_settings()中设置了DeepSeek的API Key和服务地址两个环境变量,DeepSeek采用了和OpenAI相同的环境变量名称与调用方式:

img

提示词模板

在LangChain中提示词模板推荐用ChatPromptTemplate。from_messages从消息对象模板构造整个提示词模板,每个元组的第一个元素代表消息对象模板类,第二个元素是该消息的提示词模板:

img

如上面的system和user分别代表对应的SystemMessageTemplate和用户消息模板HumanMessageTemplate,用字符串比传入实例对象的代码要简洁。

下面看提示词的写法:

(“system”,“你是一个信息整理归纳助手,在回答用户的问题时,你需要参考上下文信息,结合用户的问题以及上下文信息,你归纳出简练、准确的答案,简练是指不要加入与问题的答案无关的语言,准确是指答案要严格与上下文保持一致。请注意,如果上下文的内容为空,那么你就返回”在资料中没有相关信息“这句话,而不要自己生成答案。上下文的信息如下:{context}”)

(“user”,“{question}”)

system即系统提示词部分主要用来提供上下文信息,其中的context是占位符,后面用从知识库中检索到的与question相近的内容填充,作为对用户问题的补充说明。

用户的问题将用来填充question占位符

文档加载、分割与向量存储

这一部分是做信息的索引(indexing)

langchain_community.document_loaders中提供了各种文档加载器,如PDF、MarkDown、HTML、网络链接、txt等等。

img

任何类型的文档被加载后都成为Document对象,该对象的page_content字段保存文档内容,元信息字段保存文档的附加信息,比如位置。

加载得到的文档对象一般需要分割,原因有多种,比如文档太长模型无法处理、无法用向量表征语义等。

img

加载器推荐使用代码示例中的,chunk_size是指每块的最大字符长度;chunk_overlop是相邻块的重叠字符数,很简单,这样做是为了减少语义不完整的情况;separator是分割的依据:遇到双换行就分割,没有的话遇到换行就分割,以此类推。

分割后的文档变成了多个块,每个块依然是一个Document对象,其中page_content就是该块包含的内容,元信息则和它源自的那个文档保持一致,有的提高检索质量的算法会用到这个元信息。

接下来是做文本嵌入和词向量保存:

img

和大语言模型一样,LangChain也集成了OpenAI、Hugging Face等多种嵌入模型。这里用的是阿里云百炼的DashScopeEmbeddings接口,申请API Key即可调用(link=>https://bailian.console.aliyun.com/)

同样,LangChain集成了众多的向量数据库,如Chroma、Milvus、FAISS等。通过传入分割后的chunks列表以及嵌入模型对象,创建向量数据库。这里FAISS也支持将数据持久化到本地。

然后使用RunnableLambda类来包装向量数据库的相似度检索函数,将其变成Runnable对象,从而能够参与构建链。

ReRank重排

LangChain提供了丰富的解决方案来用于提高RAG中向量检索结果的质量,比如混合检索、多检索器检索、压缩上下文(ReRank也属于此种)等等。这里我们使用ReRank模型对向量检索的结果进行重排。

Hugging Face上,北京智源人工智能研究院BAAI的bge-reranker-large是下载量最高的,中文语境效果很好。

img

我们将使用这个模型做ReRank。需要安装FlagEmbedding库,创建rerank对象(第一次运行自动从网络下载到默认缓存位置):

img

在LangChain中ReRank也属于文本压缩器compressor中的一员。我们需要自定义一个LangChain的Compressor类,继承BaseDocumentCompressor并实现compress_document方法:

img

img

上述代码非常简单,similarity_compute函数调用了上述创建的开源rerank模型对象,来计算用户问题和上阶段检索出来的文本的相似度,然后在compress_document中叫仅仅是使用Python内建的sorted函数对检索出来的文本根据相似度得分从大到小排序,最终返回最相似的前两个。

然后把检索加重排的逻辑利用ContextualCompressRetriever整合起来,即将rerank对象和上面得到的向量检索器作为参数传入,该类在只是在内部依次调用它们做了向量检索和重排而已:

img

构建链

用户输入问题,然后检索得到相似上下文,此时问题和检索到上下文将被同时传入提示词模板来生成提示词,所以我们需要一个并行的组件RunnableParallel,以及一个将问题也变成Runnable对象的组件RunablePassthroug****h (Runnable对象才能用来构建链),前者是可以同时运行两个Runable对象, 后者是将信息包装成Runanble对象并原封不动的地输出 (ps:正如很多人吐槽的那样,LangChain大量的封装逻辑往往也会引起学习或使用者理解上的困难)

img

上面第二行代码则是将整个流程中的Runnable对象组成了一个链,链本身也是Runnable。

添加回调

可以在运行时添加自定义回调,这需要继承BaseCallbackHandler,这里我简单地实现了on_chat_model_start函数,它用于在调用大模型推理时的回调:

img

最后就可以运行我们的问答应用了:

img

链的最后是一个输出解析器,用来将大模型的回答格式化。

输出解析器

LangChain中的消息都用消息对象封装,比如大模型输出的是AIMessage对象。所以我们需要把结果结构化成我们期望的格式,比如框架自带的StrOutputParser就是提取模型输出对象中content信息。

img

通过继承解析器基类BaseOutputParser,重写parse方法,自定义输出形式:

img

效果测试

测试文档中有一些人物的介绍信息,我希望通过大模型帮我快速总结关键信息,而不用自己阅读完整文档,在提示词中已经限制大模型要用简练的语言回答,并且文档中不存在的人物就按约定的内容回答不知道,下面看一下模型效果:

:林悦喜欢吃什么

根据您的问题,我找到的相关答案是:

林悦喜欢吃火锅,尤其是涮毛肚和鸭肠,蘸香油蒜泥调料。她还喜欢各种川味小吃,如钟水饺和龙抄手,以及一些清淡的川菜,如开水白菜。

^_感谢您的咨询_^

:诸葛亮喜欢吃什么

根据您的问题,我找到的相关答案是:

在资料中没有相关信息。

^_感谢您的咨询_^

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值