深夜的银行数据中心,数据分析师小王揉了揉发酸的眼睛,72小时加班整理的客户数据清洗报告还在找bug。
隔壁工位基于DeepSeek系统的工作界面突然亮起,47分钟后,一份完整的数据清洗方案新鲜出炉,错误率还低了82%。这不是科幻电影场景,而是正在金融行业悄然上演的真实故事。
当人工智能开始读懂数据治理的门道,一场静悄悄的技术革命正在重塑商业世界的游戏规则。今天,让我们一起走进这个AI驱动的数据新世界。
数据治理遇上DeepSeek:AI引领的数据智能革命
某银行数据中心,凌晨3点。数据分析师小王正对着屏幕发愁,72小时加班整理的客户数据清洗报告还有漏洞。就在这时,他身边基于的DeepSeek系统亮起了绿灯—47分钟,一份完整的数据清洗方案新鲜出炉,错误率还低了82%。
这不是科幻片场景,而是当下正在金融行业悄然发生的真实变革。
金融机构的反洗钱团队里,已经逐渐开始引入AI(DeepSeek)重写游戏规则。
面对每天2万条可疑交易预警,传统人工审核犹如大海捞针。DeepSeek分钟级完成了一场数据革命:系统自主分析8.6亿笔历史交易,识别出327个可疑特征,其中42个是人类从未发现的交易模式。
更令人惊叹的是,AI(DeepSeek)不是一个简单的规则执行者。它像一位经验丰富的数据侦探,能从看似普通的交易数据中,嗅出潜在风险。
一个典型案例:系统发现某批次凌晨3-5点的小额高频转账都来自新注册设备,立即提升了预警等级,最终协助银行提前23天发现了一起新型虚拟货币洗钱案件。
在零售行业,DeepSeek展现出更强大的商业智慧。
某连锁超市引入DeepSeek后,不仅打通了86个业务系统的数据孤岛,更让促销决策有了"千里眼"。在春节前后,提前预测到某果礼盒的区域性需求激增,自动协调12个仓库完成调配,最终实现销售额同比增长275%。
新技术带来新机遇,也催生新物种。传统数据分析师正在向"数据炼金师"进化,他们不再是简单的数据清洗工,而是数据价值的设计师。某银行设立的"AI训练师"岗位,晋升速度已经是传统岗位的3倍。
这场数据治理革命的本质,不是简单的效率提升,而是认知升级。AI(DeepSeek)正在改变数据治理的底层逻辑:从被动响应到主动预测,从规则驱动到智能认知,从单点治理到生态协同。
基本实现逻辑:
DeepSeek API + RAG API + 数据(知识库)+ 需求Coding
智能数据治理的破局之道
制造业车间里,AI(DeepSeek)正在改写生产效能的新定义。
某工厂的设备数据原本就像散落的珍珠,虽然珍贵却难以串联。AI(DeepSeek)上线不久,自动发现的异常模式数量达到初期设定的13倍,设备效能提升40%。机器设备的"健康档案"不再是静态的数据表格,而成了智能预测的实时战报。
更令人瞩目的是政务领域的数字化蝶变。
某市平台借助AI(DeepSeek),将56个部门的数据治理流程编织成一张智能服务网。群众办事从"跑断腿"到"一网通办",审批效率提升6倍。
数据不再是冰冷的代码,而是温暖的服务触点。
券商交易室里,AI(DeepSeek)绘制的"市场异常波动关联图"成了风控会议的制胜法宝。快消品公司用它模拟不同营销方案,新品上市成功率从35%跃升至68%。城市交通管理部门基于它的实时数据分析,动态调整信号灯配时,早高峰拥堵指数下降27%。
这种智能化转型不是简单的工具替换,而是思维模式的进化。
某科技公司CDO说:“最理想的数据治理,是让用户感受不到治理的存在,却能享受到精准数据服务带来的无形之美。”
在这场数字化浪潮中,AI(DeepSeek)正在重塑数据治理的未来图景:从被动防御到主动进化,从单点突破到全域赋能,从工具应用到决策伙伴。它不仅是数据治理的智能助手,更是数字时代的创新引擎。
当AI开始深刻理解数据治理的精髓,人类的角色正在向更高维度跃迁。未来已来,拥抱变革者,方能御风而行。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。