近年来,AI 技术的焦点正经历一场静默但深刻的转变——从追求“类人交互”的 AI Agents 转向以任务分解与数据整合为核心的 Agentic Workflows。这一转变不仅折射出技术成熟度的现实考量,更揭示了企业对效率与价值的本质需求。
作者 Cobus Greyling 作为 Kore AI 的首席技术推广官,在 AI 领域具有深厚的专业背景。通过这篇文章「Why The Focus Has Shifted from AI Agents to Agentic Workflows」,他希望理清当前 AI 发展的关键转折点,并为企业在技术选择和实施路径上提供切实可行的指导。我们一起来看看对于文章的完整解读吧。
AI Agents 的困境:理想与现实的鸿沟
AI Agents 曾被寄予厚望,被视为实现“类人交互”的终极形态。然而,商业实践中的冰冷数据揭示了其局限性:
- 准确率不足:以 Claude AI Agent 为例,其任务完成成功率仅为 14%,远低于人类的 72.4%(OSWorld 基准)。即使 OpenAI Operator 将准确率提升至 30-50%,仍无法满足企业对生产级稳定性的要求。
- 安全与成本挑战:Web 浏览型 Agent 易受恶意弹窗攻击,而通过操作系统 GUI 构建通用接口(如 Anthropic MCP 方案)则面临开发复杂性与 API 缺失的掣肘。
正如 Cobus Greyling 所言:“若穿透营销泡沫,AI Agents 的原型虽惊艳,却尚未准备好进入生产环境。”企业逐渐意识到,单一 Agent 难以独立承担复杂任务,而过度依赖其“拟人化”特性可能带来不可控风险。
Agentic Workflows:从“拟人”到“增效”的范式升级
Agentic Workflows 的核心理念在于任务分解(Task Decomposition)与数据合成(Data Synthesis)。它摒弃了对“类人行为”的执念,转而通过结构化流程提升效率:
-
复杂任务的模块化:例如,用户指令“调整会议时间并汇总明日任务”可分解为四个子步骤:会议改期、任务检索、摘要生成、邮件发送。每个步骤均支持人工监督与流程修正,确保可控性。
-
跨源数据整合:现代知识工作者平均耗费 30% 时间检索信息。Agentic Workflows 通过调用多源数据(文档、API、实时网络)并合成个性化答案,直接解决“信息过载”痛点。
这一模式的技术实现依赖于两大创新:
- 推理引擎的进化:如 ChatGPT 的 “Deep Research” 功能,通过多步骤网络检索与数据合成,将耗时数小时的人类工作压缩至数十分钟。
- 框架化工具生态:LlamaIndex 提出的 “Agentic RAG” 概念,强调为“单一受众”动态合成实时数据,标志着从静态检索到动态工作流的跃迁。
技术阶梯:从语言模型到工作流编排的演进路径
Cobus Greyling 在文章中提出的 “Stairway to human-like interactions” 模型,清晰勾勒了这一演进路径:
- 基础层(Basic):以 LLM 为核心,实现上下文理解与基础生成。
- 中间层(Intermediate):GenAI 应用聚焦条件数据生成(如创意文案)与场景化理解。
- 高级层(Advanced):AI Agents 尝试模拟人类交互,而 Agentic Workflows 则通过数据合成与推理解决问题,成为当前技术落地的更优解。
这一阶梯模型揭示了一个关键趋势:技术价值不再取决于“拟人程度”,而在于能否系统性提升生产力。例如,Salesforce 等企业从 AI Agents 向 Workflows 的“硬性转向”,正是基于对投资回报率的务实考量。
未来展望:桌面级编排与行业重构
Agentic Workflows 的下一阶段将聚焦桌面级任务编排(Desktop Orchestration),即整合本地文件、云端数据与实时信息流,为知识工作者提供端到端的自动化支持。其潜在影响包括:
- 工具范式革新:传统“单点功能型工具”将让位于可组合、可观测的工作流平台。
- 行业解决方案差异化:垂直领域(如法律、医疗)可通过定制化 Workflows 实现专业知识与 AI 的深度耦合。
正如文中所言:“真正的创新不在于掌握最新技术,而在于用其解决真实业务挑战。”当技术焦点从“炫技”回归“增效”,Agentic Workflows 或将成为企业智能化转型的核心基础设施。
结语:价值优先的技术理性
AI Agents 与 Agentic Workflows 的此消彼长,本质是技术理想主义向商业理性的回归。当企业意识到“70% 的人类基准准确率”短期内难以逾越时,选择通过结构化工作流弥补技术短板,无疑是更务实的路径。这种转变不仅关乎技术路线,更映射出一个深层逻辑:在 AI 时代,可持续的价值创造永远始于对真实需求的洞察,而非对技术噱头的追逐。
延伸思考:若 Agentic Workflows 成为主流,人类在流程中的角色将如何演变?是彻底退居为监督者,还是与 AI 形成更紧密的共生关系?这一问题或许将定义下一代人机协作的终极形态。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。