现有关于多模态融合的研究多集中在模型性能的提升上,对可解释的探索比较少。但实际上,可解释性是提升用户信任、优化模型决策的关键,具有重要的研究价值,符合当前学术界对透明AI的迫切需求。
因此,想要在多模态领域拥有成果,可解释的多模态融合是个很好的选择。中山六院团队的可解释多模态融合模型Brim,以及Nature子刊上的可解释纵向多模态融合模型,都是近期非常值得参考的研究,推荐感兴趣的论文er研读。
An explainable longitudinal multi-modal fusion model for predicting neoadjuvant therapy response in women with breast cancer
方法:论文提出了一种可解释的多模态融合模型(MRP),结合乳腺X光、MRI影像、病理信息和临床数据,通过跨模态学习和时间信息嵌入,预测乳腺癌患者对新辅助治疗的反应,性能优于传统方法和人类专家。
创新点:
- 通过引入跨模态知识预测器,模型性能在内部和外部数据集上的表现显著提高。
- 通过决策曲线分析方法,结合患者和临床医生的偏好,评估了MRP模型在不同决策阈值下的临床效用。
- 通过时间信息嵌入,模型在处理纵向数据时表现更为优异。
Interpretable Multimodal Fusion Model for Bridged Histology and Genomics Survival Prediction in Pan-Cancer
方法:论文开发了一个可解释的多模态融合模型(Brim),通过整合全切片图像(WSIs)和基因组分子特征,以预测癌症患者的预后,该模型通过Transformer多实例学习和自正则化网络提升预测准确性。
创新点:
- Brim模型通过整合全切片图像(WSIs)和基因组分子特征,实现了泛癌患者的预后预测。
- 设计了桥接网络来学习配对的WSIs和基因组分子特征之间的关联,特别是在仅有WSIs的情况下预测缺失的分子信息。
- 使用了注意力和集成梯度归因分析等可解释性方法,分析了不同模型在泛癌预后预测中WSI补丁和基因组分子特征的贡献。
Explainable Multi-Modal Deep Learning With Cross-Modal Attention for Diagnosis of Dyssynergic Defecation Using Abdominal X-Ray Images and Symptom Questionnaire
方法:论文提出了一种可解释的多模态融合模型,结合腹部X光图像和症状问卷数据,通过跨模态注意力和卷积块注意力模块(CBAM)增强特征提取,并利用Grad-CAM和DeepSHAP技术解释模型决策,从而实现对出口梗阻性便秘(DD)的准确诊断。
创新点:
- 提出了一个解释性多模态深度学习模型,用于诊断排便障碍(DD)。
- 引入跨模态注意力机制(CMA)以增强多模态模型的性能,允许模型在不同模态之间选择性地聚焦和整合信息。
- 发明了掩蔽增强技术,以帮助模型忽略无关背景,更准确地聚焦于患者身体。
Crisiskan: Knowledge-infused and explainable multimodal attention network for crisis event classification
方法:论文提出了一种可解释的多模态融合模型(CrisisKAN),用于危机事件分类。该模型结合图像、文本和维基百科知识,通过引导式交叉注意力模块弥合图像与文本的语义差距,并利用Grad-CAM技术提供预测结果的可视化解释,从而在危机事件分类中实现更高的准确性和可解释性。
创新点:
- 提出了CrisisKAN,这是一种新颖的知识注入与解释性多模态注意力网络,用于分类危机事件。
- 引入了一种新的性能评估指标,称为多任务模型强度(MTMS)。
- 在模型中集成了一个解释性模块,结合使用了梯度加权类激活映射(Grad-CAM),以提供对模型预测的强大解释。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。