遗传算法(GA)与粒子滤波(PF)结合 的 MATLAB 示例代码。遗传算法用于改进粒子滤波的重采样过程,以避免粒子退化问题并增强全局优化能力。代码设置了三维的状态量和观测量,展示了如何通过 GA 和 PF 的结合进行状态估计。
订阅专栏后可直接查看MATLAB源代码
代码介绍
代码实现了结合遗传算法与粒子滤波(Genetic Algorithm-Particle Filter, GA-PF)的状态估计方法,适用于非线性/非高斯系统的动态跟踪。通过遗传算法的选择、交叉和变异机制改进传统粒子滤波的重采样过程,旨在缓解粒子退化问题并提升状态估计精度。代码包含完整的状态生成、观测模拟、算法实现、误差统计和可视化流程。
核心功能模块
-
参数初始化
- 粒子数
N=100
,时间步长T=50
,状态维度state_dim=3
- 定义状态转移矩阵
A
- 粒子数