MATLAB代码|遗传算法(GA)与粒子滤波(PF)结合|三维滤波|状态量和观测量都是三维的|附完整的MATLAB代码

在这里插入图片描述

遗传算法(GA)与粒子滤波(PF)结合 的 MATLAB 示例代码。遗传算法用于改进粒子滤波的重采样过程,以避免粒子退化问题并增强全局优化能力。代码设置了三维的状态量和观测量,展示了如何通过 GA 和 PF 的结合进行状态估计。订阅专栏后可直接查看MATLAB源代码

代码介绍

代码实现了结合遗传算法与粒子滤波(Genetic Algorithm-Particle Filter, GA-PF)的状态估计方法,适用于非线性/非高斯系统的动态跟踪。通过遗传算法的选择、交叉和变异机制改进传统粒子滤波的重采样过程,旨在缓解粒子退化问题并提升状态估计精度。代码包含完整的状态生成、观测模拟、算法实现、误差统计和可视化流程。

核心功能模块

  1. 参数初始化

    • 粒子数 N=100,时间步长 T=50,状态维度 state_dim=3
    • 定义状态转移矩阵 A
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值