哈佛首推:基于多模态自适应模型的精准治疗人工智能体TxAGENT

在现代医学领域,精准治疗正逐渐成为提升医疗效果、降低风险的关键策略。它强调根据患者的个体特征,如年龄、遗传因素、疾病进展情况等,制定个性化的治疗方案。然而,传统的治疗决策往往依赖于医生的经验和有限的医学知识,难以全面考虑患者的具体情况。为了应对这一挑战,哈佛研究人员推出了 TXAGENT:一种能够利用多模态自适应模型,生成个性化治疗建议的人工智能体。

img

01 TXAGENT 的核心优势

  • 多步推理与工具集成

TXAGENT 的核心优势在于其多步推理能力和与实时生物医学工具的集成。它并非简单地依赖预训练的知识,而是能够在面对复杂的治疗问题时,通过多步推理,逐步分析和解决。例如,当需要确定一种药物是否适合特定患者时,TXAGENT 会先分析患者的病史、过敏史、正在服用的其他药物等信息,再结合药物的药理特性、相互作用等,进行综合判断。

  • 实时知识检索

TXAGENT 连接了一个包含 211 种工具的工具集 TOOLUNIVERSE,这些工具涵盖了药物机制、相互作用、临床指南和疾病注释等多个方面。通过实时检索这些工具中的信息,TXAGENT 能够获取最新的生物医学知识,确保治疗建议的准确性和时效性。例如,对于 2024 年新批准的药物,TXAGENT 可以迅速获取其适应症、剂量等信息,为临床应用提供指导。

  • 个性化治疗策略

TXAGENT 能够根据患者的个体特征,量身定制治疗策略。它会综合考虑患者的年龄、遗传因素、疾病进展情况、合并症以及正在服用的药物等因素,确定禁忌症,并生成最适合患者的治疗方案。例如,对于一位老年患者,TXAGENT 会特别关注药物的副作用和对老年患者身体状况的影响,以确保治疗的安全性和有效性。

img

TXAGENT 的核心优势

02 TXAGENT 的构成与工作原理

  • TOOLUNIVERSE:强大的工具集

TOOLUNIVERSE 是 TXAGENT 的核心组成部分之一,它整合了来自可靠来源的 211 种工具。这些工具包括 openFDA、Open Targets 和人类表型本体等,涵盖了药物和疾病的各个方面。例如,有些工具专门用于检索药物的适应症和用法,有些则用于分析药物的不良反应和相互作用。

img

TOOLUNIVERSE 包含 211 个生物医学工具

  • TOOLRAG 模型:智能的工具检索

TOOLRAG 模型是 TXAGENT 的另一个重要组成部分,它能够根据查询上下文从 TOOLUNIVERSE 中动态选择最相关的工具。当 TXAGENT 面临一个治疗问题时,TOOLRAG 模型会分析问题的关键点,然后从众多工具中挑选出最适合解决该问题的工具。例如,如果问题是关于药物的剂量,TOOLRAG 模型就会选择与剂量相关的工具进行查询。

  • 多步推理过程

TXAGENT 的工作流程是一个多步推理的过程。首先,它会接收一个治疗问题或上一轮的工具反馈。然后,基于输入信息,TXAGENT 生成一个基于语言的思维过程,并调用相应的工具。在推理过程中,TXAGENT 不断地生成推理步骤和函数调用,直到得出一个有充分依据的答案。例如,当需要确定一种药物的蛋白质靶点时,TXAGENT 会先检索疾病的 EFO ID,再查询与疾病映射到蛋白质靶点相关的工具,最后根据检索到的信息进行排序和分析。

03 TXAGENT 的性能评估

  • 基准测试

为了评估 TXAGENT 的性能,研究人员构建了五个新的基准测试:DrugPC、BrandPC、GenericPC、DescriptionPC 和 TreatmentPC。这些基准测试涵盖了 3168 项药物推理任务和 456 个个性化治疗场景,全面评估了 TXAGENT 在结构化和非结构化查询中药物选择、治疗个性化以及推理的稳健性。

  • 与现有模型的比较

在这些基准测试中,TXAGENT 的表现优于领先的大语言模型(LLMs)、工具使用模型和推理智能体。例如,在开放式药物推理任务中,TXAGENT 的准确率达到了 92.1%,比 GPT-4o 高出 25.8%。在个性化治疗建议方面,TXAGENT 在 TreatmentPC 基准测试中的准确率也显著高于其他模型。

  • 对药物名称变体和描述的泛化能力

TXAGENT 还展现出了对各种药物名称变体和描述的强大泛化能力。在 BrandPC、GenericPC 和 DescriptionPC 基准测试中,TXAGENT 的准确率均高于其他模型,且在不同药物名称表示形式上的性能差异极小。这表明 TXAGENT 能够准确识别和处理不同形式的药物名称,为临床应用提供了更大的灵活性。

img

TXAGENT 的性能评估

04 TXAGENT 的应用案例

  • 儿科患者的治疗选择

在面对一位患有杜氏肌营养不良症的儿科患者时,TXAGENT 首先调用工具检索与该疾病相关的药物。它排除了基于类固醇的疗法和外显子跳跃反义寡核苷酸,最终确定 Duvyzat 是唯一符合患者标准的药物。为了评估其儿科适用性,TXAGENT 进一步查询相关工具,确认 Duvyzat 对六岁以上儿童是安全的。

  • 药物相互作用的分析

当患者正在服用 Prozac 治疗抑郁症,并考虑添加 Xolremdi 治疗 WHIM 综合征时,TXAGENT 通过多步推理分析了这两种药物的相互作用。它发现 Xolremdi 与依赖 CYP2D6 进行清除的药物存在禁忌症,而 Prozac 既是 CYP2D6 的底物又是抑制剂。因此,TXAGENT 得出结论,患者同时服用这两种药物是不合适的。

  • 老年患者的剂量调整

对于一位 70 岁的精神分裂症患者,TXAGENT 需要确定 Cobenfy 的最大推荐剂量。它调用相关工具,发现老年患者的最大推荐剂量低于年轻患者,原因是老年患者尿潴留的风险增加。TXAGENT 综合这些信息,为患者提供了合适的剂量建议。

  • 合并症的考虑

在为一位患有二度房室传导阻滞和高血压的患者选择治疗方案时,TXAGENT 首先检索与高血压相关的药物,然后根据房室传导阻滞的禁忌症进行过滤。最终,它确定了无禁忌症的药物,并提供了详细的治疗建议。

img

TXAGENT 的应用案例

05 总结

尽管 TXAGENT 在精准治疗领域展现出了巨大的潜力,但它仍存在一些局限性。例如,TOOLUNIVERSE 中的工具数量和覆盖范围仍有待进一步扩展,以满足更广泛的临床需求。此外,TXAGENT 的推理过程和工具调用还可以进一步优化,以提高效率和准确性。

未来,随着生物医学知识的不断更新和技术的持续进步,TXAGENT 将不断完善和发展。它有望整合更多的医学数据和工具,支持更复杂的临床决策。同时,TXAGENT 也将与其他医疗技术相结合,如电子健康记录系统和医学影像分析工具,为临床医生提供更全面、更智能的辅助支持。

总之,TXAGENT 作为一种创新的人工智能体,为精准治疗带来了新的希望和机遇。它通过多步推理、实时知识检索和工具辅助决策,显著提高了治疗建议的准确性和个性化程度。随着其不断发展和完善,TXAGENT 将在临床实践中发挥越来越重要的作用,为患者带来更好的治疗效果和更安全的医疗体验。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值