阿里Qwen3技术报告核心要点解读!

阿里Qwen3技术报告正式发布,相关的模型架构、预训练及后训练过程等技术细节都有披露。

img

近期Qwen3的各种尺寸更小的量化模型也在各开源社区上架,有需要可关注。

图片

模型架构

  • 密集模型架构:包含6个密集模型,架构与Qwen2.5相似,包含GQA、SwiGLU、RoPE以及带预归一化的RMSNorm等,移除了QKV-bias,在注意力机制中引入QK-Norm,以确保训练稳定性。
  • 混合专家模型架构:包含2个混合专家模型,与密集模型共享基础架构,沿用Qwen2.5-MoE的架构,加入细粒度专家分段设计,共128个专家,每个token激活8个专家,舍弃共享专家模块,采用全局批次负载均衡损失技术促进专家专业化。

img

img

预训练

  • 预训练数据:与Qwen2.5相比,预训练token数量是之前的两倍,涵盖的语言数量达到其三倍以上,数据集包含119种语言和方言,总计36万亿tokens,涵盖多个领域的高质量内容,通过多种方式扩展预训练语料库,包括使用Qwen2.5-VL模型对文档进行文本识别、利用Qwen2.5模型优化文本、合成多种形式的文本token等。

  • 三阶段预训练

    • 通用知识学习阶段:使用4,096 tokens的序列长度,对超过30万亿tokens的数据进行训练,聚焦于语言结构、语法、常识与通用世界知识的学习。
    • 推理能力强化阶段:增加STEM、编程、推理和合成数据的比例,使用约5万亿高质量tokens进行进一步预训练,加速学习率的衰减。
    • 长上下文扩展阶段:构建专门的高质量长上下文语料库,序列长度最高达32,768个tokens,使用ABF技术提升RoPE的基频,引入YARN和双块注意力机制,提升推理过程中的序列长度容量。
  • 预训练结果评估:Qwen3系列的基础语言模型在通用知识、推理能力、数学水平、科学知识、编程能力以及多语言任务等方面表现优异,优于之前的先进开源模型,且在激活参数和总参数较少的情况下,Qwen3的MoE基础模型和密集基础模型均展现出良好的性能。

图片

后训练

图片

  • 四阶段训练

    • 长链式思维冷启动阶段:构建包含数学、代码、逻辑推理和STEM问题的高质量数据集,进行严格的两阶段过滤流程,建立模型的基础推理范式。
    • 推理强化学习阶段:收集查询-验证对,采用GRPO方法更新模型参数,通过控制模型的熵值平衡探索与实用之间的关系,提升模型的推理能力。
    • 思考模式融合阶段:对推理强化学习模型进行监督微调,设计对话模板融合“非思考”能力,使模型能够在不同思考模式下作出响应,并处理中间情况。
    • 通用强化学习阶段:建立复杂的奖励系统,覆盖多种任务,使用三种不同类型的奖励机制,全面增强模型在各种场景下的能力与稳定性。
  • 从强到弱蒸馏:涵盖5个密集模型和1个MoE模型,分为Off-policy蒸馏和On-policy蒸馏两个阶段,提升轻量级模型的推理能力,赋予其稳健的模式切换能力。

  • 后训练结果评估:旗舰模型Qwen3-235B-A22B展现出当前开源模型中最先进的整体性能,与顶尖闭源模型具有高度竞争力;旗舰密集模型Qwen3-32B在推理能力上优于之前的模型,且在非思考模式下表现出色;轻量级模型在性能上持续优于参数量相近甚至更大的开源模型,验证了强到弱蒸馏方法的有效性。

图片

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 阿里Qwen 2.5 接入 WPS 文档编辑器集成方案 #### API接口使用教程 为了实现阿里Qwen 2.5与WPS文档编辑器的集成,开发者需遵循特定API接口指南来完成对接工作。此过程涉及获取必要的认证凭证以及调用相应的服务端口。 #### 获取认证凭证 在开始之前,确保已注册并登录至阿里云平台账户。通过访问控制台创建应用以获得`AccessKey ID` `AccessKey Secret`,这是用于身份验证的重要参数[^1]。 #### 安装依赖库 对于Python环境而言,推荐安装官方提供的SDK以便简化开发流程: ```bash pip install aliyun-python-sdk-core-v3 ``` 上述命令会下载适用于Python的应用程序编程接口软件包,从而方便后续操作中的请求发送响应处理[^2]。 #### 初始化客户端实例 利用所取得的身份验证信息初始化Client对象,这一步骤是发起任何有效请求的前提条件之一。 ```python from aliyunsdkcore.client import AcsClient client = AcsClient( &#39;<your-access-key-id>&#39;, &#39;<your-access-key-secret>&#39;, &#39;cn-hangzhou&#39; # 地域ID, 可根据实际需求调整 ) ``` 此处替换占位符为真实的密钥数据,并指定合适的地域节点以减少延迟时间[^3]。 #### 调用具体功能 针对不同业务场景下的需求,可以查阅官方文档找到对应的方法名称及其参数列表。例如,要查询模型版本状态可执行如下代码片段: ```python request = QwenVersionRequest.QwenVersionRequest() response = client.do_action_with_exception(request) print(response.decode()) ``` 这段脚本展示了如何构建一个关于询问Qwen大模型版本详情的服务请求,并打印返回的结果字符串[^4]。 请注意,在真实项目部署过程中还需要考虑错误捕获机制、日志记录等功能模块的设计;同时也要关注目标办公软件本身开放的能力范围,确保双方能够良好协作达成预期效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值