大模型微调系列:如何让大模型成为领域专家?

如何让大模型成为领域专家?

大语言模型展现出强大的语言处理能力,但通用大模型在应对特定领域或任务时存在局限性。不少企业部署了 DeepSeek 大模型,却难以满足特定需求场景。

今天,我们探讨大模型进阶玩法 —— 模型微调,助力打造贴合自身需求的专属模型,让你的大模型成为领域专家。

很多人认为微调技术高深复杂,其实不然。随着 DeepSeek 等模型兴起,AI 开源社区与工具不断成熟,非专业技术爱好者也能轻松上手 。

img

01

为什么大模型需要微调?

在 AI 技术落地过程中,DeepSeek 一体机以及企业自主下载部署的大模型,凭借海量通用数据训练,构建起了强大的语言理解与生成能力底座。然而,当这些模型切入实际企业业务场景时,由于缺乏专业领域知识储备,面对复杂业务任务适配性不足,导致性能难以充分发挥,难以满足企业精细化的业务需求。

为了有效解决这一痛点,大模型微调成为关键路径。

**微调定义:**大模型微调是利用特定领域的数据集对已预训练的大模型进一步训练的过程。它旨在优化模型在特定任务上的性能,使模型能够更好地适应和完成特定领域的任务。

大模型微调具有多方面的核心价值,主要体现在以下几点:

  • 提高性能

    通过微调,可以针对特定的任务或领域对大模型进行优化,使其在该任务上的性能得到显著提升。

  • 适应特定场景

    不同的应用场景往往有不同的需求和特点。微调能够让大模型适应各种特定场景。

  • 减少资源消耗

    相较于训练一个全新的大型模型,微调通常只需要较少的计算资源和时间。这是因为微调是在已有的预训练模型基础上进行的,只需对模型的部分参数进行调整,大大降低了训练成本。

  • 保护隐私

    在一些情况下,数据所有者可能不希望将原始数据用于训练模型,以保护数据隐私。通过微调,可以在不接触原始数据的情况下,利用预训练模型的知识来构建满足特定需求的模型。

  • 促进模型的广泛应用

    微调使得大模型能够更容易地被应用到各种不同的领域和任务中,降低了模型应用的门槛。研究人员和开发者可以根据自己的需求快速定制模型,推动了人工智能技术在更多领域的普及和创新。

02

常见微调需求场景

微调大模型能让其更好地适配不同业务场景,满足多样化需求。下面是常见大模型微调需求场景:

img

从上面适合微调的原因可以看出,适合微调非常关键的一条是需要有高质量的标注数据。

03

微调和RAG有何不同?

目前有很多灵活的知识库工具,也能够提升在特定领域的专业度。

不少人会疑惑,能否通过搭建全面知识库来解决问题呢?微调和RAG如何选择?

以下是微调(Fine-tuning)与RAG的对比框架,以关键维度进行对比:

img

在实际落地的专业领域和企业场景中,微调与RAG经常会结合使用,通过微调固化核心知识,以RAG补充动态信息。

补充阅读:RAG是什么?

RAG 即检索增强生成(Retrieval-Augmented Generation),是一种将检索技术与语言模型生成相结合的技术。

以下是其简单介绍:

原理:RAG 在生成文本时,会先根据用户的问题或提示从外部知识源(如文档库、知识库等)中检索相关信息,然后将这些检索到的信息作为额外的上下文输入到语言模型中,最后由语言模型基于这些丰富的上下文生成回答。

优点:它能够显著提高语言模型回答的准确性和可靠性,因为模型不再仅仅依赖于自身预训练所学到的知识,还可以实时获取最新、最准确的外部信息。同时,RAG 也有助于解决语言模型可能出现的 “幻觉” 问题,即生成看似合理但实际上错误或无根据的内容。

04

微调的类型和方法

预训练模型在大规模数据上学习到了丰富的特征和模式,这些特征和模式具有一定的通用性。

在微调阶段,将特定领域的数据输入到预训练模型中,模型的参数会根据这些新数据进行调整。

通常,会冻结模型的部分层(尤其是底层,因为底层往往学习到的是通用的特征),只对部分层(如靠近输出层的部分)的参数进行更新,这样可以在保留预训练模型已有知识的同时,让模型适应新的任务。

  • 按参数更新范围分类,分为全参数微调(Full Fine-tuning)和参数高效微调 (Parameter-Efficient Fine-tuning,如Adapter Tuning、LoRA、Prefix Tuning);
  • 按学习策略分类,分为监督学习微调(Supervised Fine-Tuning)、无监督学习微调(Unsupervised Fine-Tuning)、半监督学习微调(Semi-Supervised Fine-Tuning)和强化学习微调(Reinforcement Learning Fine-Tuning);
  • 按任务类型分类,分为特定任务微调(Task-Specific Fine-Tuning)和多任务微调(Multi-Task Fine-Tuning);
  • 按模型应用领域分类,分为领域适应微调(Domain Adaptation Fine-Tuning)和跨模态微调(Cross-Modal Fine-Tuning);
  • 按微调过程特点分类,分为增量微调(Incremental Fine-Tuning)和微调后冻结(Fine-Tuning Followed by Freezing)。

在选择微调方法时,我们需要综合考虑任务的复杂性、可用的数据量、计算资源和期望的性能,在微调策略选择上,建议采用「数据量 - 场景」双维决策模型,以下可作为参考:

  • 当领域标注数据≥10 万条时(如法律文书审查、药物研发),优先选择全量微调(更新 100% 参数),通过深度定制实现专业场景的性能突破;

  • 数据量 1-10 万条时(覆盖 90% 行业场景),推荐 LoRA+Adapter 组合方案(仅更新 1-3% 参数),在保持预训练模型泛化能力的同时注入领域特性,算力成本降低 99%(对比全量方案);

  • 小样本场景(<1 万条)采用「提示工程 + 合成数据增强」组合(标注成本下降 70%),配合轻量化微调(如 QLoRA)实现边缘设备部署。

其中 LoRA 方式微调可以满足大部分场景,因为它相对全参数微调的性能损失是较小(差别一般不超过 5%)且对训练所需要的计算资源要求会比全参数微调低很多。

05

大模型微调的基本流程

一)大模型微调的基本步骤

img

图:大模型微调基本步骤

1)选定并加载预训练模型:挑选一款适合微调的基础模型。

2)准备并加载数据集:为模型微调提供所需数据。

3)测试微调前的模型:准备一些问题对模型进行测试,以便后续对比。

4)选择微调方法和超参数:确定模型微调方法及各项超参数。

5)执行微调训练:启动模型的微调训练过程。

6)测试微调后的模型:使用之前的问题测试模型,并对比前后效果。

7)调整优化:若效果不满意,调整数据集和超参数,直至达到满意效果。

8)得到微调好的模型:完成微调,获得可用模型。

二)关键概念

1)预训练模型

作为微调的基础,就像接受过基础教育的学生,具备基本语言处理能力。如GPT、DeepSeek等已在大量通用数据上训练,能处理多种语言任务。考虑成本和运行效率,通常选择开源小参数模型,如Meta的llama、阿里的qwen、DeepSeek(蒸馏版)。

2)数据集

用于模型微调的数据,如同“补课”教材,包含特定领域知识和任务要求。数据需经过标注和整理,帮助模型学习特定领域模式和规律。模型训练对数据集格式要求不高,JSON、CSV、XML等结构化数据格式均支持。

大家可从Hugging Face等网站获取公开数据集。Hugging Face堪称AI领域的GitHub,为开发者提供预训练模型和数据集的分享、获取和使用平台。

3)超参数

类似于给模型“补课”前制定的教学计划,决定教学方式、强度和方向。超参数选择不当,会影响模型性能。

  • 学习率:决定模型训练时参数更新的步长,取值范围通常在0.0001到0.1之间。

  • 训练轮次:模型对整个训练数据集的训练次数,需根据数据集和模型性能确定。

  • 批量大小:每次训练迭代使用的样本数量,常见值有16、32、64等。

  • 优化器:决定模型训练时参数的更新方式,如SGD、Adam等。权重衰减:防止模型过拟合,提高模型泛化能力。

了解这些超参数后,可根据具体任务和数据集合理调整,提升微调效果。

后续将通过实战环节,借助准备好的数据集,按照微调流程对选定模型进行微调,观察模型性能变化。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值