光伏发电---光伏组件“热斑效应”介绍

一、 什么是“热斑效应”?
在一定的条件下,光伏组件中缺陷区域(被遮挡、裂纹、气泡、脱层、脏污、内部连接失效等)被当做负载消耗其它区域所产生的能量,导致局部过热,这种现象称为光伏组件的“热斑效应”。
二、“热斑效应”有哪些危害?
热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。
三、如何检测电站中存在的“热斑效应”?
1、检测工具
热成像仪:红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。
2、检测方法
在一定的辐照度下,用热成像仪对运行中的光伏组件进行热斑检测,检测前尽量保证光伏组件表面无脏污及异物遮挡,同时还要注意勿使身体及检测仪遮挡光伏组件;检测仪器距离光伏组件不能太近,避免热(红外)相机捕捉到组件发射的太阳光点而造成误判断。热斑检测最好在春末、夏季、秋初的上午11时—下午16时之间的时间段内进行,由于区域原因而导致辐照度、环境温度等的不同,热斑检测的最佳时间段也会相应不同。
3、热斑判断
一般情况下认为:光伏组件在正常工作时的温度为30℃时,局部温度高于周边温度6.5℃时,可认为组件局部为热斑区域。不过这也不是绝对的,因为热斑检测会受到辐照度、组件输出功率、环境温度及组件工作温度、热斑形成原因等因素的影响,因而判断热斑效应最好是以热成像仪图像上的数据分析为准。(以下图片为组件局部的热斑成像)
异物遮挡的热斑成像
(1)异物遮挡的热斑成像
组件烧损的热斑成像
(2)组件烧损的热斑成像
组件裂纹处热斑成像
(3)组件裂纹处热斑成像
其他原因造成的热斑成像
(4)其它原因造成的热斑成像

四、解决方案:

1、在组件上加装旁路二极管。通常情况下,旁路二极管处于反偏压,不影响组件正常工作,当组件中的电池被遮挡时,此时二极管导通,从而避免被遮电池过热损坏,并且被遮挡电池只影响所在电池组的发电能力。
2、优化制造工艺。组件生产时使用同一档次的电池、焊接前检查隐裂片、防止漏焊虚焊、增加组件整体强度等。
五、电站预防组件产生热斑的措施:
1、及时清除组件附近的杂草等异物;及时清理组件表面的灰尘、鸟屎等异物,保证组件表面清洁无杂物。
2、合理设定组件清洗时间:防止气温过低而结冰,造成污垢堆积;防止将冷水喷洒在很热的面板上,导致面板碎裂或内部隐裂等故障。
3、搬运组件时尽量减少玻璃弯曲、组件碰撞,禁止在组件上坐、躺以及攀登等,以防组件内部损伤。
注意:相同或不同原因导致的热斑形状都不是固定的,所以要多方对比,寻求产生现象的正确原因。

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
下面是一个使用ResNet的光伏热斑识别系统的代码示例: ```python import torch import torch.nn as nn import torchvision.models as models # 定义ResNet模型 class ResNetModel(nn.Module): def __init__(self, num_classes): super(ResNetModel, self).__init__() self.resnet = models.resnet50(pretrained=True) self.resnet.fc = nn.Linear(2048, num_classes) def forward(self, x): x = self.resnet(x) return x # 创建模型实例 model = ResNetModel(num_classes=2) # 加载预训练的模型权重(可选) # model.load_state_dict(torch.load('pretrained_weights.pth')) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 def train_model(inputs, labels, num_epochs): for epoch in range(num_epochs): outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}') # 使用示例数据进行训练 inputs = torch.randn(10, 3, 224, 224) # 输入数据形状为 (batch_size, channels, height, width) labels = torch.randint(2, (10,)) # 标签数据形状为 (batch_size,) train_model(inputs, labels, num_epochs=100) # 使用模型进行预测 test_inputs = torch.randn(5, 3, 224, 224) # 测试数据 outputs = model(test_inputs) _, predicted = torch.max(outputs.data, 1) print('Predictions:', predicted) ``` 注意,以上代码中的ResNet模型使用了预训练的权重,你可以选择加载预训练权重或者自行训练模型。数据集的准备和加载部分不在代码示例中,你需要根据自己的数据集进行适当的修改。此外,代码中的示例数据仅用于演示,你需要替换为自己的数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值