
YOLO多模态融合改进

文章平均质量分 97
提供完整项目包,利用YOLO系列模型融合可见光、红外等不同模态的数据集图像进行检测精度的提升,融合不同模态之间的优势。本专栏提供不同模型以及不同区域的融合方法及改进方案。目前多模态目标检测发文量较少,更易发文。
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Limiiiing
YOLO系列,RT-DETR模型、多模态融合改进。专栏内所有文章均配置完整代码和详细步骤,亲测可行,快速涨点。订阅专栏享受改进,写作,选刊等答疑内容,助力科研,发文无忧。
展开
-
《多模态融合改进》目录一览 | 专栏介绍 ,多模态的全方位改进,提供多模态模型改进完整项目包-开箱即用
在大家订阅专栏后,便可获得多模态模型改进完整项目包-开箱即用,方便简单原创 2025-04-15 13:31:46 · 1577 阅读 · 0 评论 -
《YOLO系列模型的多模态项目》配置使用教程(必看内容)
在根目录的文件夹中用于存放的是我已经配置好的一些多模态融合模型,可结合专栏中相应的文章介绍,进一步了解测试其中内容。原创 2025-04-10 20:29:01 · 435 阅读 · 0 评论 -
【YOLOv8多模态融合改进】| TFAM:时序融合注意力模块 | 引入通道 - 空间双分支注意力机制,解决双模态特征融合中时序关联不足的问题
TFAM模块通过时序信息驱动的注意力机制,解决了双时相特征融合中时序关联不足的问题,实现了更精准的变化区域定位和特征表示。其结构轻量、泛化性强,为变化检测任务提供了一种高效的特征融合解决方案。原创 2025-05-02 11:00:00 · 35 阅读 · 0 评论 -
【YOLOv10多模态融合改进】| TFAM:时序融合注意力模块 | 引入通道 - 空间双分支注意力机制,解决双模态特征融合中时序关联不足的问题
TFAM模块通过时序信息驱动的注意力机制,解决了双时相特征融合中时序关联不足的问题,实现了更精准的变化区域定位和特征表示。其结构轻量、泛化性强,为变化检测任务提供了一种高效的特征融合解决方案。原创 2025-05-02 10:30:00 · 26 阅读 · 0 评论 -
【YOLOv11多模态融合改进】| TFAM:时序融合注意力模块 | 引入通道 - 空间双分支注意力机制,解决双模态特征融合中时序关联不足的问题
TFAM模块通过时序信息驱动的注意力机制,解决了双时相特征融合中时序关联不足的问题,实现了更精准的变化区域定位和特征表示。其结构轻量、泛化性强,为变化检测任务提供了一种高效的特征融合解决方案。原创 2025-05-01 11:00:00 · 33 阅读 · 0 评论 -
【YOLOv12多模态融合改进】| TFAM:时序融合注意力模块 | 引入通道 - 空间双分支注意力机制,解决双模态特征融合中时序关联不足的问题
TFAM模块通过时序信息驱动的注意力机制,解决了双时相特征融合中时序关联不足的问题,实现了更精准的变化区域定位和特征表示。其结构轻量、泛化性强,为变化检测任务提供了一种高效的特征融合解决方案。原创 2025-05-01 10:30:00 · 397 阅读 · 0 评论 -
【YOLOv10多模态融合改进】| PSFM,深层语义融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖关系
本文记录的是利用PSFM 模块改进 YOLOv10 的多模态融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。该模块以可见光语义为引导、红外热信号为补充,通过双向注意力计算实现“语义类别”与“热目标位置”的精准对齐,同时捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与原创 2025-04-30 08:38:30 · 19 阅读 · 0 评论 -
【YOLOv8多模态融合改进】| PSFM,深层语义融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖关系
本文记录的是利用PSFM 模块改进 YOLOv12 的多模态融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。该模块以可见光语义为引导、红外热信号为补充,通过双向注意力计算实现“语义类别”与“热目标位置”的精准对齐,同时捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与原创 2025-04-30 08:37:46 · 90 阅读 · 0 评论 -
【YOLOv11多模态融合改进】| PSFM,深层语义融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖关系
本文记录的是利用PSFM 模块改进 YOLOv12 的多模态融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。该模块以可见光语义为引导、红外热信号为补充,通过双向注意力计算实现“语义类别”与“热目标位置”的精准对齐,同时捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与原创 2025-04-29 08:37:28 · 206 阅读 · 0 评论 -
【YOLOv12多模态融合改进】| PSFM,深层语义融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖关系
本文记录的是利用PSFM 模块改进 YOLOv12 的多模态融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。该模块以可见光语义为引导、红外热信号为补充,通过双向注意力计算实现“语义类别”与“热目标位置”的精准对齐,同时捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与原创 2025-04-29 08:37:07 · 403 阅读 · 0 评论 -
【YOLOv10多模态融合改进】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现跨模态特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 YOLOv10 的多模态融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成跨模态特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion原创 2025-04-23 08:37:51 · 55 阅读 · 0 评论 -
【YOLOv8多模态融合改进】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现跨模态特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 YOLOv8 的多模态融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成跨模态特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion i原创 2025-04-23 08:37:35 · 70 阅读 · 0 评论 -
【YOLOv11多模态融合改进】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现跨模态特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 YOLOv11 的多模态融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成跨模态特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion原创 2025-04-22 12:52:46 · 75 阅读 · 0 评论 -
【YOLOv12多模态融合改进】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现跨模态特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 YOLOv12 的多模态融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成跨模态特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion原创 2025-04-22 12:51:33 · 320 阅读 · 0 评论 -
【YOLOv12多模态融合改进】| CGA Fusion:内容引导的注意力融合模块,空间权重引导的多模态特征自适应融合
本文记录的是利用CGA Fusion 模块改进 YOLOv12 的多模态融合部分。(Content-Guided Attention Fusion)通过内容引导注意力生成空间权重,引导高低层特征的自适应融合。本文利用模块,通过内容引导注意力生成空间权重,自适应地融合两个模态的特征,在特征融合阶段实现跨模态语义对齐与噪声抑制,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。DEA-Net: Single image dehazing based on detail-enhan原创 2025-04-21 08:45:09 · 333 阅读 · 0 评论 -
【YOLOv11多模态融合改进】| CGA Fusion:内容引导的注意力融合模块,空间权重引导的多模态特征自适应融合
本文记录的是利用CGA Fusion 模块改进 YOLOv11 的多模态融合部分。(Content-Guided Attention Fusion)通过内容引导注意力生成空间权重,引导高低层特征的自适应融合。本文利用模块,通过内容引导注意力生成空间权重,自适应地融合两个模态的特征,在特征融合阶段实现跨模态语义对齐与噪声抑制,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。DEA-Net: Single image dehazing based on detail-enhan原创 2025-04-20 11:47:19 · 71 阅读 · 0 评论 -
【YOLOv10多模态融合改进】| CGA Fusion:内容引导的注意力融合模块,空间权重引导的多模态特征自适应融合
本文记录的是利用CGA Fusion 模块改进 YOLOv10 的多模态融合部分。(Content-Guided Attention Fusion)通过内容引导注意力生成空间权重,引导高低层特征的自适应融合。本文利用模块,通过内容引导注意力生成空间权重,自适应地融合两个模态的特征,在特征融合阶段实现跨模态语义对齐与噪声抑制,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。DEA-Net: Single image dehazing based on detail-enhan原创 2025-04-20 11:36:09 · 40 阅读 · 0 评论 -
【YOLOv8多模态融合改进】| CGA Fusion:内容引导的注意力融合模块,空间权重引导的多模态特征自适应融合
本文记录的是利用CGA Fusion 模块改进 YOLOv8 的多模态融合部分。(Content-Guided Attention Fusion)通过内容引导注意力生成空间权重,引导高低层特征的自适应融合。本文利用模块,通过内容引导注意力生成空间权重,自适应地融合两个模态的特征,在特征融合阶段实现跨模态语义对齐与噪声抑制,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。DEA-Net: Single image dehazing based on detail-enhanc原创 2025-04-19 14:28:21 · 62 阅读 · 0 评论 -
分析多模态融合中Add与Concat的区别 | 如何在融合部分互换Add和Concat
在多模态多模型融合或一些常见的计算机视觉目标检测模型中,特征图拼接是融合不同层级或不同分支特征的关键操作,其中Add(元素级相加) 和 Concat(通道拼接) 是两种最常用的方式。本文主要从含义、原理、区别及使用场景展开详细分析,并讲解如何在融合部分互换和。实际应用中的注意事项尺寸对齐:Concat的配置步骤原项目中就是有的,和颈部那边的拼接一致,用的是同一个模块。Add的配置步骤可参考这里:https://blog.csdn.net/qq_42591591/article/details/14714原创 2025-04-16 10:33:08 · 62 阅读 · 0 评论 -
【YOLOv8多模态融合改进】| 引入轻量化特征提取模块,解决多模态中的双模型参数量、计算量增加问题(适用不同的轻量化模块)
本文记录的是利用轻量化模块改进 YOLOv8 的多模态目标检测网络模型。由于多模态模型在训练过程中使用的是两个模型,整体的参数量计算量相比一般的单模态模型大,所以轻量化也是多模态模型改进过程中常见的一个改进方向。本文介绍如何使用轻量化模块改进中的主要特征提取模块。效果如下,也可替换成其它轻量化模块。EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks实现代码如下:四、改进点对中的进行改进,并将在加入到模块中。(第原创 2025-04-15 10:35:36 · 64 阅读 · 0 评论 -
【YOLOv10多模态融合改进】| 引入轻量化特征提取模块,解决多模态中的双模型参数量、计算量增加问题(适用不同的轻量化模块)
本文以EfficientNet中的MBConv为例,介绍其原理,在后续的轻量化过程中,可按照同样的步骤替换成其它轻量化模块。原创 2025-04-14 13:42:02 · 53 阅读 · 0 评论 -
【YOLOv12多模态融合改进】| 引入轻量化特征提取模块,解决多模态中的双模型参数量、计算量增加问题(适用不同的轻量化模块)
本文以EfficientNet中的MBConv为例,介绍其原理,在后续的轻量化过程中,可按照同样的步骤替换成其它轻量化模块。原创 2025-04-14 12:34:44 · 102 阅读 · 0 评论 -
【YOLOv11多模态融合改进】| 引入轻量化特征提取模块,解决多模态中的双模型参数量、计算量增加问题(适用不同的轻量化模块)
本文记录的是利用轻量化模块改进 YOLOv11 的多模态目标检测网络模型。由于多模态模型在训练过程中使用的是两个模型,整体的参数量计算量相比一般的单模态模型大,所以轻量化也是多模态模型改进过程中常见的一个改进方向。本文介绍如何使用轻量化模块改进YOLOv11 中的主要特征提取模块。效果如下,也可替换成其它轻量化模块。EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks实现代码如下:四、改进点对中的进行改进,并将在原创 2025-04-14 10:02:43 · 176 阅读 · 0 评论 -
【YOLOv12多模态融合改进】| CFT:跨模态融合Transformer | 利用Transformer的自注意力机制,解决跨模态融合中的长距离依赖和全局信息整合问题
本文记录的是利用 CFT 模块改进 YOLOv12 的多模态目标检测网络模型。的设计出发点在于解决传统多模态检测中跨模态特征融合不充分的问题,即当不同模态数据需协同检测时,基于CNN的方法因局部卷积的局限性,难以捕捉长距离依赖和全局模态间的互补信息,导致复杂光照、遮挡等场景下检测精度不足。本文利用模块,将多模态特征序列拼接后自动学习模态内与模态间的交互权重,在特征提取阶段整合全局上下文信息,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。Cross-Modality Fus原创 2025-04-11 13:34:37 · 69 阅读 · 0 评论 -
【YOLOv11多模态融合改进】| CFT:跨模态融合Transformer | 利用Transformer的自注意力机制,解决跨模态融合中的长距离依赖和全局信息整合问题
本文记录的是利用 CFT 模块改进 YOLOv11 的多模态目标检测网络模型。的设计出发点在于解决传统多模态检测中跨模态特征融合不充分的问题,即当不同模态数据需协同检测时,基于CNN的方法因局部卷积的局限性,难以捕捉长距离依赖和全局模态间的互补信息,导致复杂光照、遮挡等场景下检测精度不足。本文利用模块,将多模态特征序列拼接后自动学习模态内与模态间的交互权重,在特征提取阶段整合全局上下文信息,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。Cross-Modality Fus原创 2025-04-11 13:15:30 · 78 阅读 · 0 评论 -
【YOLOv10多模态融合改进】| CFT:跨模态融合Transformer | 利用Transformer的自注意力机制,解决跨模态融合中的长距离依赖和全局信息整合问题
本文记录的是利用 CFT 模块改进 YOLOv10 的多模态目标检测网络模型。的设计出发点在于解决传统多模态检测中跨模态特征融合不充分的问题,即当不同模态数据需协同检测时,基于CNN的方法因局部卷积的局限性,难以捕捉长距离依赖和全局模态间的互补信息,导致复杂光照、遮挡等场景下检测精度不足。本文利用模块,将多模态特征序列拼接后自动学习模态内与模态间的交互权重,在特征提取阶段整合全局上下文信息,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。Cross-Modality Fus原创 2025-04-11 13:00:41 · 49 阅读 · 0 评论 -
【YOLOv8多模态融合改进】| CFT:跨模态融合Transformer | 利用Transformer的自注意力机制,解决跨模态融合中的长距离依赖和全局信息整合问题
本文记录的是利用 CFT 模块改进 YOLOv8 的多模态目标检测网络模型。的设计出发点在于解决传统多模态检测中跨模态特征融合不充分的问题,即当不同模态数据需协同检测时,基于CNN的方法因局部卷积的局限性,难以捕捉长距离依赖和全局模态间的互补信息,导致复杂光照、遮挡等场景下检测精度不足。本文利用模块,将多模态特征序列拼接后自动学习模态内与模态间的交互权重,在特征提取阶段整合全局上下文信息,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。Cross-Modality Fusi原创 2025-04-11 12:39:28 · 64 阅读 · 0 评论 -
【YOLOv10多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P6大目标检测层,完整步骤及代码
主题: YOLOv10的多模态融合改进中增加P5大目标检测层方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P5多模态融合检测层。内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。原始模型结构如下:二、有效特征层对应的检测头类别2.1 P3/8 - small检测头原始模型中的对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在到像素左右的目标。2.2 P4/16 - medium检测头这个检测头对应的经过了更多的下采样原创 2025-04-11 09:17:48 · 33 阅读 · 0 评论 -
【YOLOv8多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P5大目标检测层,完整步骤及代码
主题: YOLOv8的多模态融合改进中增加P5大目标检测层方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P5多模态融合检测层。内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。原始模型结构如下:二、有效特征层对应的检测头类别2.1 P3/8 - small检测头原始模型中的对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在到像素左右的目标。2.2 P4/16 - medium检测头这个检测头对应的经过了更多的下采样操原创 2025-04-11 09:17:35 · 37 阅读 · 0 评论 -
【YOLOv11多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P6大目标检测层,完整步骤及代码
主题: YOLOv11的多模态融合改进中增加P5大目标检测层方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P5多模态融合检测层。内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。原始模型结构如下:二、有效特征层对应的检测头类别2.1 P3/8 - small检测头原始模型中的对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在到像素左右的目标。2.2 P4/16 - medium检测头这个检测头对应的经过了更多的下采样原创 2025-04-10 20:47:51 · 88 阅读 · 0 评论 -
【YOLOv12多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P6大目标检测层,完整步骤及代码
主题: YOLOv12的多模态融合改进中增加P5大目标检测层方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P5多模态融合检测层。内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。原始模型结构如下:二、有效特征层对应的检测头类别2.1 P3/8 - small检测头原始模型中的对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在到像素左右的目标。2.2 P4/16 - medium检测头这个检测头对应的经过了更多的下采样原创 2025-04-10 20:47:15 · 49 阅读 · 0 评论 -
【YOLOv12多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P2小目标检测层,完整步骤及代码
主题: YOLOv12的多模态融合改进中增加P2小目标检测层方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P2多模态融合检测层。内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。原始模型结构如下:二、有效特征层对应的检测头类别2.1 P3/8 - small检测头原始模型中的对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在到像素左右的目标。2.2 P4/16 - medium检测头这个检测头对应的经过了更多的下采样原创 2025-04-10 20:46:41 · 50 阅读 · 0 评论 -
【YOLOv8多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P2小目标检测层,完整步骤及代码
主题: YOLOv8的多模态融合改进中增加P2小目标检测层方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P2多模态融合检测层。内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。原始模型结构如下:二、有效特征层对应的检测头类别2.1 P3/8 - small检测头原始模型中的对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在到像素左右的目标。2.2 P4/16 - medium检测头这个检测头对应的经过了更多的下采样操原创 2025-04-10 20:46:05 · 67 阅读 · 0 评论 -
【YOLOv10多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P2小目标检测层,完整步骤及代码
主题: YOLOv10的多模态融合改进中增加P2小目标检测层方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P2多模态融合检测层。内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。原始模型结构如下:二、有效特征层对应的检测头类别2.1 P3/8 - small检测头原始模型中的对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在到像素左右的目标。2.2 P4/16 - medium检测头这个检测头对应的经过了更多的下采样原创 2025-04-10 20:45:26 · 48 阅读 · 0 评论 -
【YOLOv11多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P2小目标检测层,完整步骤及代码
主题: YOLOv11的多模态融合改进中增加P2小目标检测层方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P2多模态融合检测层。内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。原始模型结构如下:二、有效特征层对应的检测头类别2.1 P3/8 - small检测头原始模型中的对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在到像素左右的目标。2.2 P4/16 - medium检测头这个检测头对应的经过了更多的下采样原创 2025-04-10 20:44:21 · 65 阅读 · 0 评论 -
【YOLOv10单模态融合改进】普通数据集的双模型融合改进,涉及中期、中后期、后期融合方式的完整配置步骤以及二次改进方案
在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。原创 2025-04-10 20:42:51 · 36 阅读 · 0 评论 -
【YOLOv8单模态融合改进】普通数据集的双模型融合改进,涉及中期、中后期、后期融合方式的完整配置步骤以及二次改进方案
在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。原创 2025-04-10 20:42:19 · 50 阅读 · 0 评论 -
【YOLOv11单模态融合改进】普通数据集的双模型融合改进,涉及中期、中后期、后期融合方式的完整配置步骤以及二次改进方案
在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。原创 2025-04-10 20:41:50 · 50 阅读 · 0 评论 -
【YOLOv12单模态融合改进】普通数据集的双模型融合改进,涉及中期、中后期、后期融合方式的完整配置步骤以及二次改进方案
在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。原创 2025-04-10 20:41:10 · 55 阅读 · 0 评论 -
【YOLOv12多模态融合改进】(可见光+红外)涉及前期、中期、中后期、后期融合方式的完整配置步骤以及二次改进方案
在网络输入阶段将多模态数据直接合并,形成统一的特征表示。原创 2025-04-10 20:23:34 · 422 阅读 · 0 评论