深度学习简介

深度学习简介

神经网络与深度学习的关系

深度学习比起传统神经网络的优势在于:
1.采用了新的激活函数ReLu,可以使得网络的层次超过三层
2.采用Dropout, Maxout和随机池化技术(Stochastic Pooling)解决过拟合问题
3.可以采用GPU,解决多层网络训练速度慢的问题。

深度学习的问题

深度学习有它的问题:深度学习目前还停留在实验科学的阶段,其严格的数学解释还未完全建立。Geometric Understanding of Deep Learning一文从几何的角度理解深度学习,为深度学习提供严密的数学论证。NIPS2018有论文从数学角度尝试解释Dropout的作用,深入探究dropout的本质。

深度学习与人工智能中其他理论的关系

在这里插入图片描述

深度学习框架介绍

流行的深度学习框架
现在流行的深度学习框架有很多。包括微软开发的CNTK,Google的TensorFlow,蒙特利尔大学开发的Theano, facebook开发的Caffe,Pytorch基金会创立的PyTorch和由中国人发起的MXNet。图1-9是微软公司发布的各种深度学习框架性能对比图。

几种深度学习框架简介
Deep learning frameworks ranking computed by Jeff Hale, based on 11 data sources across 7 categories
微软的CNTK是采用C++开发,提供了C++和Python的接口。Torch有个Python版本Pytorch。相比Tensorflow它有个优势是调试方便。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值