搭建本地茴香豆

我们要动手尝试将茴香豆从源码部署到本地服务器(以 MobaXterm为例),并开发一款简单的知识助手 Demo。

2.1 环境搭建

打开MobaXterm,添加SSH远程 链接

HuixiangDou已下载

ray1环境下 

2.1.1 搭建茴香豆虚拟环境

命令行中输入一下命令,创建茴香豆专用 conda 环境:

studio-conda -o internlm-base -t ray1  (??)

创建成功,用下面的命令激活环境:

conda activate ray1

环境激活成功后,命令行前的括号内会显示正在使用的环境,请确保所有茴香豆操作指令在 ray1 环境下运行。

2.2 安装茴香豆

下面开始茴香豆本地标准版的安装。

2.2.1 下载茴香豆

先从茴香豆仓库拉取代码到服务器:

cd /home/ray
# 克隆代码仓库
git clone https://github.com/internlm/huixiangdou && cd HuixiangDou
git checkout 79fa810

 拉取完成后进入茴香豆文件夹,开始安装

2.2.2 安装茴香豆所需依赖

首先安装茴香豆所需依赖:

conda activate ray1
# parsing `word` format requirements
apt update
apt install python-dev libxml2-dev libxslt1-dev antiword unrtf poppler-utils pstotext tesseract-ocr flac ffmpeg lame libmad0 libsox-fmt-mp3 sox libjpeg-dev swig libpulse-dev
# python requirements
pip install BCEmbedding==0.1.5 cmake==3.30.2 lit==18.1.8 sentencepiece==0.2.0 protobuf==5.27.3 accelerate==0.33.0
pip install -r requirements.txt
# python3.8 安装 faiss-gpu 而不是 faiss


# 注意 pip install BCEmbedding==0.1.5 

2.2.3 下载模型文件

茴香豆默认会根据配置文件自动下载对应的模型文件,为了节省时间,本次教程所需的模型已经提前下载到服务器中,我们只需要为本次教程所需的模型建立软连接,然后在配置文件中设置相应路径就可以:

# 创建模型文件夹
cd /home/ray && mkdir models

# 复制BCE模型
ln -s /root/share/new_models/maidalun1020/bce-embedding-base_v1 /root/models/bce-embedding-base_v1
ln -s /root/share/new_models/maidalun1020/bce-reranker-base_v1 /root/models/bce-reranker-base_v1

# 复制大模型参数(下面的模型,根据作业进度和任务进行**选择一个**就行)
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b

    https://hf-mirror.com' # 使用 huggingface  中国镜像加速下载,如果在国外,忽略此步骤

               git  clone

bce-embedding-base_v1      bce-reranker-base_v1    internlm2-chat-7b

 完成后可以在相应目录下/models看到所需模型文件

2.2.4 更改配置文件

茴香豆的所有功能开启和模型切换都可以通过 config.ini 文件进行修改,默认参数如下:

执行下面的命令更改配置文件,让茴香豆使用本地模型:

sed -i '9s#.*#embedding_model_path = "/home/ray/models/bce-embedding-base_v1"#' /home/ray/HuixiangDou/config.ini
sed -i '15s#.*#reranker_model_path = "/home/ray/models/bce-reranker-base_v1"#' /home/ray/HuixiangDou/config.ini
sed -i '43s#.*#local_llm_path = "/home/ray/models/internlm2-chat-7b"#' /home/ray/HuixiangDou/config.ini

2.3 知识库创建

修改完配置文件后,就可以进行知识库的搭建,本次教程选用的是茴香豆和 MMPose 的文档,利用茴香豆搭建一个茴香豆和 MMPose 的知识问答助手。

conda activate ray1

cd /home/ray/HuixiangDou/ && mkdir repodir

git clone https://github.com/internlm/huixiangdou --depth=1 repodir/huixiangdou
git clone https://github.com/open-mmlab/mmpose    --depth=1 repodir/mmpose

# Save the features of repodir to workdir, and update the positive and negative example thresholds into `config.ini`
mkdir workdir
python3 -m huixiangdou.service.feature_store

 2.4 测试知识助手

2.4.2 Gradio UI 界面测试

茴香豆也用 gradio 搭建了一个 Web UI 的测试界面,用来测试本地茴香豆助手的效果。

 在运行茴香豆助手的服务器端,输入下面的命令,启动茴香豆 Web UI:

conda activate ray1
cd /home/ray/huixiangdou
python3 -m huixiangdou.gradio

 3 茴香豆高阶应用(选做)

3.1 开启网络搜索

对于本地知识库没有提到的问题或是实时性强的问题,可以开启茴香豆的网络搜索功能,结合网络的搜索结果,生成更可靠的回答。

开启网络搜索功能需要用到 Serper 提供的 API:

  1. 登录 Serper ,注册:

  2. 进入 Serper API 界面,复制自己的 API-key:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值