LightGBM算法:高效梯度提升树原理与实现

本文介绍了LightGBM算法,一种快速且内存高效的梯度提升树实现。通过直方图构建、梯度计算、直方图梯度统计和分割,以及梯度Boosting树的训练,LightGBM能有效地处理大规模数据集的机器学习任务。文章详细阐述了LightGBM的工作原理和实现过程,有助于读者深入理解这一强大的机器学习工具。
摘要由CSDN通过智能技术生成

梯度提升树(Gradient Boosting Tree)是一种常用的机器学习算法,它通过迭代地训练多个弱学习器,并将它们组合成一个强学习器。LightGBM是梯度提升树算法的一种高效实现,它具有快速训练速度和较低的内存消耗,适用于处理大规模数据集的机器学习任务。

LightGBM的核心思想是基于直方图的决策树学习。下面我们将详细介绍LightGBM算法的原理和实现,并提供相应的源代码。

数据准备

首先,我们需要准备训练数据。假设我们有一个分类任务,包含N个样本和M个特征。我们将特征表示为一个N×M的矩阵X,标签表示为一个长度为N的向量y。

import numpy as np

# 构造训练数据
X = np.random.rand(N, M
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值