使用决策树和K近邻(KNN)算法预测银行金融用户是否会发生还款逾期问题

本文介绍了如何使用决策树和K近邻(KNN)算法预测银行金融用户是否会发生还款逾期。通过Python的scikit-learn库,数据集包括用户年龄、收入等信息,以及一个二进制目标变量表示逾期状态。通过训练和测试,计算预测准确率以评估模型性能。
摘要由CSDN通过智能技术生成

随着金融行业的发展,银行面临着不断增长的用户数量和复杂性。其中一个重要的问题是如何准确预测用户是否会发生还款逾期。为了解决这个问题,我们可以使用机器学习算法,特别是决策树和K近邻(KNN)算法。本文将介绍如何使用Python编程语言实现这些算法,并进行还款逾期预测。

首先,我们需要准备数据集。数据集应包含一系列用户的金融信息,如年龄、收入、贷款金额、征信评分等。此外,数据集还应包含一个目标变量,即用户是否发生还款逾期,通常用二进制值表示,比如0表示未逾期,1表示逾期。

接下来,我们将使用Python中的scikit-learn库来实现决策树和KNN算法。首先,我们需要导入所需的库和模块:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值