随着金融行业的发展,银行面临着不断增长的用户数量和复杂性。其中一个重要的问题是如何准确预测用户是否会发生还款逾期。为了解决这个问题,我们可以使用机器学习算法,特别是决策树和K近邻(KNN)算法。本文将介绍如何使用Python编程语言实现这些算法,并进行还款逾期预测。
首先,我们需要准备数据集。数据集应包含一系列用户的金融信息,如年龄、收入、贷款金额、征信评分等。此外,数据集还应包含一个目标变量,即用户是否发生还款逾期,通常用二进制值表示,比如0表示未逾期,1表示逾期。
接下来,我们将使用Python中的scikit-learn库来实现决策树和KNN算法。首先,我们需要导入所需的库和模块:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn