Python实现多元线性回归

本文详细介绍了如何使用Python的NumPy和scikit-learn库实现多元线性回归,包括数据准备、模型创建、训练、预测及获取模型参数。通过实例展示了如何处理特征矩阵和目标变量,以及如何运用模型进行预测。
摘要由CSDN通过智能技术生成

在机器学习领域中,多元线性回归是一种常用的模型,用于建立特征与目标之间的关系。它可以帮助我们预测数值型的目标变量,并找出输入特征对目标变量的贡献程度。本文将介绍如何使用Python实现多元线性回归,并提供相应的源代码。

首先,我们需要导入所需的库。在这个例子中,我们将使用NumPy和scikit-learn(sklearn)库来进行数据处理和建立回归模型。通过运行以下代码导入这些库:

import numpy as np
from sklearn.linear_model import LinearRegression

接下来,我们需要准备训练数据。多元线性回归需要输入多个特征来预测目标变量,因此我们需要确保数据集包含多个特征列和一个目标变量列。我们可以使用NumPy数组来表示数据。下面是一个示例数据集:

# 特征矩阵
X 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值