在机器学习领域中,多元线性回归是一种常用的模型,用于建立特征与目标之间的关系。它可以帮助我们预测数值型的目标变量,并找出输入特征对目标变量的贡献程度。本文将介绍如何使用Python实现多元线性回归,并提供相应的源代码。
首先,我们需要导入所需的库。在这个例子中,我们将使用NumPy和scikit-learn(sklearn)库来进行数据处理和建立回归模型。通过运行以下代码导入这些库:
import numpy as np
from sklearn.linear_model import LinearRegression
接下来,我们需要准备训练数据。多元线性回归需要输入多个特征来预测目标变量,因此我们需要确保数据集包含多个特征列和一个目标变量列。我们可以使用NumPy数组来表示数据。下面是一个示例数据集:
# 特征矩阵
X