欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与意义
人脸关键点检测是人脸识别、表情分析、面部特征提取等任务中的一项关键技术。通过在人脸上定位出68个关键点,我们可以更准确地获取人脸的几何特征,进一步实现人脸的对齐、标准化、特征提取等操作。在安防监控、人机交互、虚拟现实等领域,人脸关键点检测具有重要的应用价值[1][2][3][4]。
二、技术原理与实现
技术框架与工具:
使用Python作为编程语言,其丰富的库和易于学习的特性使得项目实现更加高效。
OpenCV是一个开源的计算机视觉库,提供了大量的图像处理和计算机视觉算法,用于图像的读取、显示、处理和分析。
dlib是一个包含机器学习算法的C++工具包,提供了人脸检测、特征点提取等功能。
人脸检测与关键点定位:
利用dlib库中的人脸检测器(如dlib.get_frontal_face_detector())在输入图像中定位人脸区域[1][2][3][4]。
使用dlib库中的68点人脸关键点检测器(如dlib.shape_predictor()),在检测到的人脸区域内提取68个关键点,这些关键点包括眉毛、眼睛、鼻子、嘴巴等关键部位的位置信息[1][2][3][4]。
关键点标注:
利用OpenCV的绘图函数(如cv2.circle()和cv2.putText()),在图像上标注出68个关键点的位置,并用数字1-68标明每个关键点的序号[1][3]。
三、项目实现流程