1306. 跳跃游戏 III

题干

这里有一个非负整数数组 arr,你最开始位于该数组的起始下标 start 处。当你位于下标 i 处时,你可以跳到 i + arr[i] 或者 i - arr[i]。

请你判断自己是否能够跳到对应元素值为 0 的 任意 下标处。

注意,不管是什么情况下,你都无法跳到数组之外。

示例 1:

输入:arr = [4,2,3,0,3,1,2], start = 5
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案: 
下标 5 -> 下标 4 -> 下标 1 -> 下标 3 
下标 5 -> 下标 6 -> 下标 4 -> 下标 1 -> 下标 3 

示例 2:

输入:arr = [4,2,3,0,3,1,2], start = 0
输出:true 
解释:
到达值为 0 的下标 3 有以下可能方案: 
下标 0 -> 下标 4 -> 下标 1 -> 下标 3

示例 3:

输入:arr = [3,0,2,1,2], start = 2
输出:false
解释:无法到达值为 0 的下标 1 处。 

提示:

  • 1 <= arr.length <= 5 * 10^4
  • 0 <= arr[i] < arr.length
  • 0 <= start < arr.length

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jump-game-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

方法一:广度优先搜索
我们可以使用广度优先搜索的方法得到从 start 开始能够到达的所有位置,如果其中某个位置对应的元素值为 0,那么就返回 True。

具体地,我们初始时将 start 加入队列。在每一次的搜索过程中,我们取出队首的节点 u,它可以到达的位置为 u + arr[u] 和 u - arr[u]。如果某个位置落在数组的下标范围 [0, len(arr)) 内,并且没有被搜索过,则将该位置加入队尾。只要我们搜索到一个对应元素值为 0 的位置,我们就返回 True。在搜索结束后,如果仍然没有找到符合要求的位置,我们就返回 False。

class Solution {
    public boolean canReach(int[] arr, int start) {
        Queue<Integer> queue = new LinkedList<Integer>();
        boolean[] dp = new boolean[arr.length];//防止环
        queue.add(start);
        dp[start] = true;
        while (!queue.isEmpty())
        {
            Integer poll = queue.poll();
            if (arr[poll] == 0)
                return true;
            if (poll - arr[poll] >= 0 && dp[poll - arr[poll]] == false)
            {
                queue.add(poll - arr[poll]);
                dp[poll - arr[poll]] = true;
            }
            if (poll + arr[poll] < arr.length && dp[poll + arr[poll]] == false)
            {
                queue.add(poll + arr[poll]);
                dp[poll + arr[poll]] = true;
            }
        }
        return false;
    }
}

复杂度分析

  • 时间复杂度:O(N),其中 N 是数组 arr 的长度。
  • 空间复杂度:O(N)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值