题干
这里有一个非负整数数组 arr,你最开始位于该数组的起始下标 start 处。当你位于下标 i 处时,你可以跳到 i + arr[i] 或者 i - arr[i]。
请你判断自己是否能够跳到对应元素值为 0 的 任意 下标处。
注意,不管是什么情况下,你都无法跳到数组之外。
示例 1:
输入:arr = [4,2,3,0,3,1,2], start = 5
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 5 -> 下标 4 -> 下标 1 -> 下标 3
下标 5 -> 下标 6 -> 下标 4 -> 下标 1 -> 下标 3
示例 2:
输入:arr = [4,2,3,0,3,1,2], start = 0
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 0 -> 下标 4 -> 下标 1 -> 下标 3
示例 3:
输入:arr = [3,0,2,1,2], start = 2
输出:false
解释:无法到达值为 0 的下标 1 处。
提示:
- 1 <= arr.length <= 5 * 10^4
- 0 <= arr[i] < arr.length
- 0 <= start < arr.length
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jump-game-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
方法一:广度优先搜索
我们可以使用广度优先搜索的方法得到从 start 开始能够到达的所有位置,如果其中某个位置对应的元素值为 0,那么就返回 True。
具体地,我们初始时将 start 加入队列。在每一次的搜索过程中,我们取出队首的节点 u,它可以到达的位置为 u + arr[u] 和 u - arr[u]。如果某个位置落在数组的下标范围 [0, len(arr)) 内,并且没有被搜索过,则将该位置加入队尾。只要我们搜索到一个对应元素值为 0 的位置,我们就返回 True。在搜索结束后,如果仍然没有找到符合要求的位置,我们就返回 False。
class Solution {
public boolean canReach(int[] arr, int start) {
Queue<Integer> queue = new LinkedList<Integer>();
boolean[] dp = new boolean[arr.length];//防止环
queue.add(start);
dp[start] = true;
while (!queue.isEmpty())
{
Integer poll = queue.poll();
if (arr[poll] == 0)
return true;
if (poll - arr[poll] >= 0 && dp[poll - arr[poll]] == false)
{
queue.add(poll - arr[poll]);
dp[poll - arr[poll]] = true;
}
if (poll + arr[poll] < arr.length && dp[poll + arr[poll]] == false)
{
queue.add(poll + arr[poll]);
dp[poll + arr[poll]] = true;
}
}
return false;
}
}
复杂度分析
- 时间复杂度:O(N),其中 N 是数组 arr 的长度。
- 空间复杂度:O(N)。