大话伊辛模型之三:联系与应用

伊辛模型在统计物理学中扮演重要角色,不仅解释了永磁体的磁性原理,还成为退火算法和蒙特卡洛方法的基础。在计算机领域,模拟退火算法结合二维伊辛模型解决复杂优化问题;在社会学中,伊辛模型用于模拟选举趋势,反映个体受环境影响的决策变化。
摘要由CSDN通过智能技术生成

​前面曾经说过,作为统计物理学中的一个基本模型,伊辛模型可以与在不同学科的多个方面发生联系,有着很多应用,以下就是一些例子。

01

解释磁场现象

前面我们说过安培假设物质磁场起源于其内部运动电荷产生的电流,但我们不禁要问,如果仅仅由内部电流产生磁场的机制,是否足以维持一个磁铁永久的磁性?之所以提出这个问题是因为,自然界中存在一些永磁体,这些物质一旦被外磁场磁化后,即使脱离开此外磁场,也不会失去磁性;但是如果仅靠内部电流元的有序排列,显然不可能维持永久的磁性,这是因为假如离开外磁场,内部此前在外磁场作用下有序排列的电流元,极有可能在温度场的扰动下变得无序,从而使得磁铁失去磁性。

事实上,永磁体之所以能长久的保持磁性,是源于内部大量原子自身所带的属性造成的。这种原子本身自带的的禀性被称为自旋;我们可以不太准确的把这种自旋“理解为”是微观粒子像地球一样围绕地轴作自转。之所以不准确,是因为自旋属于微观属性,它实际上并不是微观粒子的自转,事实上我们无法在宏观世界中找到它的完美对应。原子的自旋能使自身产生一个固有磁矩,就一个小磁铁。

在外部磁场的干预下,物质内部的原子自旋磁性方向将会趋向于与外部磁场方向相同,于是众多的原子结合起来,在宏观上的表现就是具有磁性;而当外部磁场撤掉,这些原子的磁矩的方向并不会马上改变,而是会保持原来的方向,这样,宏观的磁性也就保持下来了。

但我们还要问,这些微观粒子它们怎么知道自己要向哪个方向旋转?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值