自编码实例3:卷积网络的自编码

      自编码结构不仅可用在全连接网络上,还可以用在卷积网络上。以下实例输入经过两层卷积、池化、反池化、两层卷积操作。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# 导入 MINST 数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/data/", one_hot=True)

# 网络模型参数
learning_rate = 0.01
n_conv_1 = 16  # 第一层  
n_conv_2 = 32  # 第二层
n_input = 784
batchsize = 50

x = tf.placeholder("float", [batchsize, n_input])
x_image = tf.reshape(x, [-1, 28, 28, 1])  # 输入图像

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding="SAME")
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")

# 编码
def encoder(x):
    h_conv1 = tf.nn.relu(conv2d(x, weights["encoder_conv1"]) + biases["encoder_conv1"])
    h_conv2 = tf.nn.relu(conv2d(h_conv1, weights["encoder_conv2"]) + biases["encoder_conv2"])
    return h_conv2, h_conv1

# 解码
def decoder(x, conv1):
    # 反卷积
    t_conv1 = tf.nn.conv2d_transpose(x-biases["decoder_conv2"], weights["decoder_conv2"], conv1.shape, [1,1,1,1])
    t_x_image = tf.nn.conv2d_transpose(t_conv1-biases["decoder_conv1"], weights["decoder_conv1"], x_image.shape, [1,1,1,1])
    return t_x_image

# 学习参数
weights = {
    "encoder_conv1": tf.Variable(tf.truncated_normal([5,5,1,n_conv_1], stddev=0.1)),
    "encoder_conv2": tf.Variable(tf.random_normal([3,3,n_conv_1,n_conv_2], stddev=0.1)),
    
    "decoder_conv1": tf.Variable(tf.random_normal([5,5,1,n_conv_1], stddev=0.1)),
    "decoder_conv2": tf.Variable(tf.random_normal([3,3,n_conv_1,n_conv_2], stddev=0.1)),
}
biases = {
    "encoder_conv1": tf.Variable(tf.zeros([n_conv_1])),
    "encoder_conv2": tf.Variable(tf.zeros([n_conv_2])),
    
    "decoder_conv1": tf.Variable(tf.zeros([n_conv_1])),
    "decoder_conv2": tf.Variable(tf.zeros([n_conv_2])),
}

# 最大池化
def max_pool_with_argmax(net, stride):
    _, mask = tf.nn.max_pool_with_argmax(net, ksize=[1, stride, stride, 1], strides=[1, stride, stride, 1], padding="SAME")
    mask = tf.stop_gradient(mask)
    net = tf.nn.max_pool(net, ksize=[1, stride, stride, 1], strides=[1, stride, stride, 1], padding="SAME")
    return net, mask

# 反池化
def unpool(net, maks, stride):
    ksize = [1, stride, stride, 1]
    input_shape = net.get_shape().as_list()
    # 输出比输入大ksize倍
    output_shape = (input_shape[0], input_shape[1]*ksize[1], input_shape[2]*ksize[2], input_shape[3])
    one_like_mask = tf.ones_like(mask)
    batch_range = tf.reshape(tf.range(output_shape[0], dtype=tf.int64), shape=[input_shape[0], 1, 1, 1])
    b = one_like_mask * batch_range
    y = mask // (output_shape[2] * output_shape[3])
    x = mask % (output_shape[2]*output_shape[3]) // output_shape[3]
    feature_range = tf.range(output_shape[3], dtype=tf.int64)
    f = one_like_mask * feature_range
    # 
    updates_size = tf.size(net)
    indices = tf.transpose(tf.reshape(tf.stack([b, y, x, f]), [4, updates_size]))
    values = tf.reshape(net, [updates_size])
    ret = tf.scatter_nd(indices, values, output_shape)
    return ret

# 输出的节点
encoder_out, conv1 = encoder(x_image)
# 池化层
h_pool2, mask = max_pool_with_argmax(encoder_out, 2)   # 加入池化
h_upool = unpool(h_pool2, mask, 2)  # 反池化
pred = decoder(h_upool, conv1)

# 使用平方差为cost
cost = tf.reduce_mean(tf.pow(x_image - pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)

# 训练参数
training_epochs = 20
display_step = 5

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    total_batch = int(mnist.train.num_examples/batchsize)
    for epoch in range(training_epochs):
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batchsize)
            _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs})
        if epoch % display_step == 0:
            print("Epoch:", "%04d"%(epoch+1), "cost=", "{:.9f}".format(c))
    print("Done")
    # 测试
    batch_xs, batch_ys = mnist.train.next_batch(batchsize)
    print("Error:", cost.eval({x: batch_xs}))
    # 可视化结果
    show_num = 10
    reconstruction = sess.run(pred, feed_dict={x: batch_xs})
    f, a = plt.subplots(2, 10, figsize=(10, 2))
    for i in range(show_num):
        a[0][i].imshow(np.reshape(batch_xs[i], (28,28)))
        a[1][i].imshow(np.reshape(reconstruction[i], (28,28)))
    plt.draw()

可以看出输出与输入基本一样

 

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
卷积码是在信息序列通过有限状态移位寄存器的过程中产生的。通常,移存器包含N级(每级A比特),并对应有基于生成多项式的m个线性代数方程,输入数据每次以A位(比特)移入移位寄存器,在此同时有n位(比特)数据作为己编码序列输出,编码效率为A/n。参数N被称作约束长度,它指明了当前的输出数据与多少输入数据有关。它决定了编码的复杂度。 译码器的功能就是,运用一种可以将错误的发生减小到最低程度的规则或方法,从已编码的码字中解出原始信息。在信息序列和码序列之间有一对一的关系。此外,任何信息序列和码序列将与网格图中的唯一一条路径相联系。因而,卷积译码器的工作就是找到网格图中的这一条路径。 Viterbi算法可被描述如下; 把在时刻i,状态 所对应的网格图节点记作 ,每个网相节点被分配一个值 。节点值按如下方式计算: (1)设 , 。 (2)在时刻i,对于进入每个节点的所有路径计算其不完全路径的长度。 (3)令 为在i时刻,到达与状态 。相对应的节点 的最小不完全路径长度。通过在前一节点随机选择一条路径就可产生新的结果。非存留支胳将从网格图中删除。以这种方式,可以从 。处生成一组最小路径。 (4)当L表示输入编码段的数目,其中每段为k比特,m为编码器中的最大穆存器的长度,如果 ,那么令 ,返回第二步。 一旦计算出所有节点值,则从 时刻,状态 。开始,沿网格图中的存留支路反向追寻即可。这样被定义的支路与解码输出将是一一对应的。关于不完全路径长度,硬判决解码将采用Hamming距离,而软判决解码将采用Euclidean距离。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值