题目:
给定一个序列一个[1],一个[2],一个[3].一个[N],你的工作是计算一个子序列的最大和。
例如,给定(6,-1,5,4,-7),这个序列中的最大和是6+(-1)+5+4=14。
输入的第一行包含一个整数t(1<=t<=20),这意味着测试用例的数目。
然后t行跟随,每一行以一个数字n(1<=n<=10万)开始,然后是n个整数跟随(所有整数都在-1000和1000之间)。
对于每个测试用例,应该输出两行。
第一行是“大小写#:”,#表示测试大小写的编号。第二行包含三个整数,序列中的最大和,子序列的开始位置,子序列的结束位置。
如果有一个以上的结果,输出第一个。输出两箱之间的空行。
输入样例:
1 1 3
1 2 10
0 0 0
输出样例:
2
5
思路:
这个题一开始就直接做了,后来发现一直遍历下去会超时,所以就没想到更好的方法,于是就去参考别人的代码,终于发现了答案
:在所有的运算后会有个mod操作,这个操作得出的值是有一定的周期性的,而且他的值必然在[0, 6]之间,也就是有7种情况,而每一次的操作需要两个f(n)的值进行操作,所以一共有7 * 7 = 49个周期,所以只需要循环52次,找到最初两个连续等于a【1】和a【2】也就是1的数就行了;
代码
:
#include<iostream>
#include<map>
#include<vector>
#include<string>
#include<cstring>
using namespace std;
int main()
{
for(int i=0;;i++)
{
int n,m,j,k,t,max;
int a[55]={0};
cin>>n>>m>>k;
if(n==0&&m==0&&k==0)
break;
a[1]=a[2]=1;
int v;
if(k==1||k==2)
cout<<1<<endl;
else
{
for( v=3;v<53;v++)
{
a[v]=(n * a[v-1] + m*a[v-2])%7;
if(a[v]==1&&a[v-1]==1)
break;
}
v-=2;
k=k%v;
a[0]=a[v];
cout<<a[k]<<endl;
}
}
}