AdaBoost之AdaBoostRegressor参数详解以及调参

本文详细解析了sklearn中的AdaBoostRegressor,包括其参数、属性和方法。重点介绍了estimator、n_estimators、learning_rate等关键参数,并通过波士顿房价数据集展示了其实例应用和参数优化。
摘要由CSDN通过智能技术生成


sklearn之AdaBoostRegressor官网:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html#sklearn.ensemble.AdaBoostRegressor

sklearn之AdaBoostRegressor官网
在这里插入图片描述

一、参数、属性及方法

class sklearn.ensemble.AdaBoostRegressor(estimator=None, *, n_estimators=50, learning_rate=1.0, loss=‘linear’, random_state=None, base_estimator=‘deprecated’)

1、参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清木!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值