基于多种机器学习模型的西北地区蒸散发模拟与趋势分析_季鹏_2023

文章利用西北地区的观测数据,通过随机森林、XGB、SVR和ANN四种机器学习模型构建蒸散发估算模型,分析了模型性能、可解释性和长期趋势,发现集成学习模型表现最优,且揭示了蒸散发受环境因素的关键影响。
摘要由CSDN通过智能技术生成

在这里插入图片描述

摘要

  本文利用西北地区 12 个草地通量站点与卫星遥感产品,基于随机森林、极端梯度提升、支持向量回归和人工神经网络 4 种机器学习方法构建 ET 估算模型,制作 5 km 分辨率 ET 产品,并分析 ET 的长期变化趋势。

关键词

西北地区;蒸散发;机器学习;可解释性;趋势分析

1 资料和方法

1. 1 研究区域与观测数据

  本文蒸散发指冠层向上的总蒸散发( ET) ,其计算公式如下:
    ET =Es+Tc。
  其中: Tc 表示冠层蒸腾; Es 表示土壤蒸发。
  本文主要关注我国西北( 包括内蒙古) 干旱、半干旱地区( 图 1a) 。选取由国家青藏高原科学数据中心、FLUXNET2015以及中国陆地生态系统通量观测研究网络提供的 12 个通量站点观测( 图 1b) ,具体站点信息和观测时长见表 1。原始数据频次为半小时、小时或者日,均处理到日尺度。
在这里插入图片描述
在这里插入图片描述

1. 2 机器学习模型构建与验证方法

  本文采用净辐射、日平均气温、日平均湿度等 19 个环境要素作为机器学习模型的预测因子( 详见表 2) 。
在这里插入图片描述
  采用 Python 中的网格搜索和交叉验证函数包( GridSearchCV) 率定 RF、XGB 和 SVR 模型中的部分超参数( 表 3) 。ANN 模型共 4 层,每层神经元的个数分别是 200、100、50 和 1。
在这里插入图片描述
  采 用 Kling-Gupta 系 数、解释方差( R2) 、均方根误差( RMSE) 和偏差( BIAS) 来验证模拟精度,其计算公式如下:
在这里插入图片描述

1. 3 SHAP 可解释性方法

  SHAP 方法是利用博弈论解释机器学习模型的方法 ,其可以量化某个输入要素对模型预测效果的具体贡献。

2 主要结果

2. 1 不同模型的模拟性能和泛化能力

  表 4 给出不同机器学习模型完成 10 次 RCV 和12 次 SCV 后的评估参数,而图 2 给出了 RCV 和SCV 试验在测试集上的验证效果。
在这里插入图片描述
在这里插入图片描述
  图 3 进一步给出了不同站点观测和模型估算的蒸散发季节分布,其中模型估算结果均来自 SCV 试验( 即站点数据均未参与模型训练) ,月尺度结果由日尺度平均得到。
在这里插入图片描述
  总体而言,各模型均能很好模拟出蒸散发的季节循环。然而,没有一种模型能够在每个站点都拥有最好的模拟效果。

2. 2 不同模型的可解释性分析

  图 4 给出了 4 种机器学习模型的 SHAP 可解释性汇总,其中横轴为 SHAP 值,纵轴的预测因子按照解释性大小从上到下依次排列,每个点的颜色代表预测因子的数值大小。

在这里插入图片描述
  图 5 进一步给出净辐射的 SHAP 值和净辐射大小以及土壤湿度之间的关系,选取观测时长最大的AROU 和 NMG 站分别代表高寒草甸和温性草原。
在这里插入图片描述

2. 3 5 km 分辨率格点蒸散发数据构建及蒸散发趋势

  利用上述 4 种机器学习方法构建了西北地区 5 km 分 辨 率2001—2018 年的多模型集合蒸散发产品( 简称 ML_ENS) 。 图6 对比了 ML-ENS 和其他高分辨率产品对不同站点 ET 季节循环的模拟效果。
在这里插入图片描述
  图 7 进一步给出 2001—2018 年西北地区非裸地下垫面的降水、蒸散发以及降水减蒸散发的趋势分布。
在这里插入图片描述

3 结论

  本文以我国西北地区为例,通过 12 个通量站点的多年观测数据训练 4 种机器学习模型,采用随机交叉验证、空间交叉验证和 SHAP 可解性方法检验模型模拟效果与可解释性; 利用具有较好物理可解释性的机器学习模型,结合遥感与格点气象再分析资料生成一套 5 km 分辨率、2001—2018 年蒸散发产品,对蒸散发的长期趋势进行了分析,得到如下主要结论:
  1) RF、XGB、SVR 和 ANN 模型均能很好估算西北地区草地下垫面的日尺度蒸散发,且均具有较好的鲁棒性和泛化能力。基于集成学习理念的 RF和 XGB 模型在随机交叉验证中偏差接近 0,从而拥有比 SVR 和 ANN 模型更小的均方根误差。没有一种模型在所有站点都拥有最好的模拟效果。相比单一模型,4 种模型的集合平均使得蒸散发的季节循环估算误差降低 7% ~20%。
  2) 虽然在具体权重大小上存在差异,4 种机器学习方法均将净辐射作为估算蒸散发的首要因子,同时也都给予植被参数( EVI 或 NDVI) 以及土壤湿度较大的权重,均能合理捕捉干旱、半干旱地区能量、水分和植被对蒸散发的影响。另外,4 种机器学习模型能够合理描述土壤偏干时土壤水分对蒸散发的限制作用。
  3) 基于 4 种机器学习模型集合平均的格点蒸散发产品( ML-ENS) 相比 FLUXCOM、GLEAM 和GLASS 蒸散发产品误差降 低 45% ~ 70%。基 于ML-ENS 产品的趋势分析表明,西北地区( 裸地和沙漠除外) 在 2001—2018 年呈现出蒸散发增加的趋势,且河套、内蒙古中部和东北部地区蒸散发的增加将抵消降水增加的增湿效应,从而进一步增加干旱化风险。

  • 33
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清木!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值