import tensorflow as tf import numpy as np import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 我们希望输入任意数量的mnist图像及标签,因此用placeholder传入 x = tf.placeholder(tf.float32, [None, 784]) #定义权重项 W = tf.Variable(tf.zeros([784,10])) #定义偏置项 b = tf.Variable(tf.zeros([10])) #定义模型 y = tf.nn.softmax(tf.matmul(x, W) + b) y_ = tf.placeholder("float", [None,10]) #计算交叉熵,评估模型 cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #梯度下降算法(gradient descent algorithm)以0.01的学习速率最小化交叉熵 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) init = tf.initialize_all_variables() #训练模型 with tf.Session() as sess: sess.run(init) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) #随机梯度下降训练 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) #评估模型 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print (sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
TensorFlow 实现Softmax 回归模型
最新推荐文章于 2021-10-13 19:54:50 发布