TensorFlow 实现Softmax 回归模型

import tensorflow as tf
import numpy as np

import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# 我们希望输入任意数量的mnist图像及标签,因此用placeholder传入
x = tf.placeholder(tf.float32, [None, 784])

#定义权重项
W = tf.Variable(tf.zeros([784,10]))
#定义偏置项
b = tf.Variable(tf.zeros([10]))
#定义模型
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder("float", [None,10])

#计算交叉熵,评估模型
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#梯度下降算法(gradient descent algorithm)以0.01的学习速率最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

init = tf.initialize_all_variables()
#训练模型
with tf.Session() as sess:
  sess.run(init)
  for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100) #随机梯度下降训练
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
  #评估模型
  correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
  accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
  print (sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值