我们在做结构方程模型时拟合指数比较差,例如CFI、TLI连0.8都不到,RMSEA大于1.0等,模型拟合效果明显太差了。那遇到这种情况时我们该怎么办?
第一,简化模型:先减少模型中潜变量的测量指标个数,如果还不行就减少潜变量个数。
第二,化潜为显:将一些潜变量尤其是测量指标比较多的潜变量换为显变量,例如用总分或均分表示。
第三,简化潜变量:一些潜变量测量指标太多了,可以用打包法将测量指标减少。
第四,处理数据中的极端值。
第五,增加样本量。
我们在做结构方程模型时拟合指数比较差,例如CFI、TLI连0.8都不到,RMSEA大于1.0等,模型拟合效果明显太差了。那遇到这种情况时我们该怎么办?
第一,简化模型:先减少模型中潜变量的测量指标个数,如果还不行就减少潜变量个数。
第二,化潜为显:将一些潜变量尤其是测量指标比较多的潜变量换为显变量,例如用总分或均分表示。
第三,简化潜变量:一些潜变量测量指标太多了,可以用打包法将测量指标减少。
第四,处理数据中的极端值。
第五,增加样本量。