系统简介
数字图像处理是近些年来发展比较热门的领域,受到诸多学者的重视。本文选择数字图像分割作为研究对象,
因为它是数字图像处理的一个非常重要的分支。
迭代阈值法在阈值法图像分割中是一种比较有效的方法,该方法是通过迭代的形式来求出分割的最佳阈值,它
的优点是有一定的自适应性。本文采用迭代式阈值分割法进行研究。迭代阈值法的基本思路是:开始时估计一个数
值作为初始阈值,然后按照设定的策略不停地改进这一估计值,直到满足既定的标准为止。
本文的分割对象是鸽脑的核磁共振成像(MRI),医学影像诊断技术是图像处理领域的一个重要研究方向。在本文
的分割过程中,规划图像处理流程是关键。流程分为图像预处理和正式分割两个阶段,图像预处理综合了线性灰度
变换、二值化操作、均值滤波、高斯滤波、数学形态学腐蚀算法和膨胀算法等步骤。预处理后的图像再采用迭代阈
值法进行正式分割,根据连通区域的面积选择,可以将不相关的区域实现消除,去掉脑壳等不相关组织,从而完成了
脑MRI图像的处理。
本文基于MATLAB软件实现所有代码的编译。
关键词:图像分割;核磁共振;迭代阈值法;MATLAB
1 绪 论
人类想要认识世界,其主要途径是通过获取的信息和传递的信息。占据人类获取外界信息总数量约四分之三的
是图像,图像是人们获得信息的重要来源。在实际的应用中,有诸多影响因素会造成图像信息混乱,比如噪声点
多、分辨率低、边界模糊、对比度低以及纹理、灰度、光照不均匀等,都会影响人们对图像信息的判断。使用计算
机对图像进行各种形式的处理,极大地促进了图像处理技术的发展。把图像分成多个有独特性质、特定的区域并且
将感兴趣目标提取出来的过程和技术就是图像分割。图像处理到图像分析的关键步骤是图像分割。本文研究目的是
从脑部MRI图像中提取脑组织,解决了模糊情况下脑组织和非脑组织难以分离的问题。
1.1 背景课题
21世纪,计算机科学技术的巨大进步,促使计算机图像处理进入飞速发展的时期,已经成功的应用于生物医学图
像分析[1]、图像编码[2]、军事目标识别、文档识别等方面。几乎所有与成像有关的领域,计算机图像处理都发挥
着重要作用。
图像分割处理技术的应运而生,是为了能提取出图像中感兴趣部分。图像处理到图像分析的关键步骤是图像分
割。在医学领域的运用也非常广泛。图像分割可以帮助研究者进一步去理解和识别图像,方便后续的操作。想要进
行图像分割处理,就必须在图像中找到感兴趣的目标区域,并准确地分割开目标区域与背景区域,再处理目标区域
的相关特征,最后便可得出正确的结论。
图像分割技术对民生医疗起着不可低估的作用。由于人体的组织形态和结构比较复杂,所以一般化的图像边界
轮廓方法对于医学影像的效果并非理想[3]。核磁共振成像(MRI)是近些年来一种新型高科技影像学检查方法。八
十年代,核磁共振技术应用于临床医学影像诊断。它具有无骨性伪影;能矢状切面等多参数成像;高度的软组织分
辨能力等独特的优点。核磁共振技术可以辅助医生察觉病人的早期病变,已经成为了心脏病、肿瘤及脑血管等疾病
的早期筛查利器。[4]
介入放射学和影像诊断学的结合,构建了诊断与治疗兼备的现代化医学影像学,在临床疾病的诊断与治疗和现
代医学的发展中发挥着巨大的作用。不同类型的医学成像技术成为这些成像技术发展的基础,导致现代医学诊断和
成像技术发生了深刻的变化。 各种新的医学成像方法正在临床中应用,这在医学诊断和治疗技术上取得了长足的进
步。 同时,通过不同的成像技术获得的信息是互补的,这也为生物医学研究和临床诊断提供了强大的力量。 因
此,医学成像技术一直受到有关专家的高度评价。 随着成像技术的飞速发展,医学图像分割处理技术也取得了长足
的进步,是目前生物医学工程和成像技术的主要研究方向。
1.2 图像分割技术的发展及研究意义
1.2.1 图像处理技术的发展历程
原始图像处理技术开始于二十世纪五十年代,由于那个时期的技术条件十分有限,该技术的应用并没有得到广
泛推广。图像处理技术的发展历程可总结概括为五个阶段:
1.2.2 国外研究现状
图像分割的研究开始于1960年代,目前国内外学者已经提出了上千种算法,但还没有一种适合所有目标对象的
通用分割算法,一般都是针对特定问题提出了与之相对应的算法。在提出的算法中,较为经典的是阈值分割算法、
边缘检测算法和区域分割技术。
1998年,人工神经网络识别技术应用于图像分割,引起了学者们的广泛关注。
2000年Shi JB与Malik J提出NormalizedCut算法。NormalizedCut是基于图论分割方法的代表作,专注于全局
解,进行划分的根据是图像的颜色、亮度和纹理。
2002年,Comaniciu D,Meer P 提出Meanshift基于像素聚类法, Meanshift 算法的鲁棒性、稳定性较好,有
着广泛的应用。
2004年,Felzenszwalb提出了Graph-Based Segmentation算法。该算法是基于图的贪心聚类算法,实现简单,
许多算法都用它作为基石。
2011年,Arbelaez Pablo提出CDHIS算法。解决不加交互的图像分割问题使用了检测轮廓的方法。
2015年,Long Jonathan发布名为IEEE Conference on Computer Vision and Pattern Recognition的论文,
FCN是图像分割领域里程碑式论文也是语义分割的开山之作。
2017年Kaiming He提出Mask R-CNN算法。Mask R-CNN通过加入不同的分支来完成目标分类、目标检测、语义分
割、实例分割、人体姿势识别等多种不同的任务。
1.2.3 国内研究现状
随着一些特定理论(例如数学形态学、波动分析和模糊数学)的出现和成熟,在过去的十年中,许多国内研究
人员致力于将新的理论和方法应用于图像分割,以改善分割效果。高质量的脑组织提取算法应该能准确处理大量来
源不同的脑MRI图像。
2008年,车娜采用局部模糊聚类思想,克服偏移校正算法对分割造成的影响。
2013年,孟会含提出三维核磁共振图像分割法,成功将脑组织分割出来。
2015年,彭尧提出云自适应混合变异粒子群算法,提高了图像分割的精度,减少分割时间。
2017年,杨德青提出改进粒子群的最大熵多阈值分割算法,避免了常规粒子群算法的缺陷,成功处理复杂的脑
部核磁共振图像分割问题。
近年来,国内外相关文献表明,当前新的图像分割方法的主要研究核心是鲁棒性、自适应性、快速性、准确性
和自动性。本文所提出的分割法通过制定合理的分割处理流程,在传统的迭代式阈值分割法的基础上,结合了数学
形态学的算法对图像进行处理。
1.3 本文研究内容与技术路线
1.3.1 本文研究内容
本文主要基于临床医学研究,分割出适合医生排查病情的MRI图像。目的是快速检测出数字图像中脑部 形状的
信息,从而帮助医疗人员直观显示大脑边缘的改变,最终提高了脑部疾病检测的正确率。为了实现该目标,本文对
下面内容进行了详细研究:
(1)对于MRI图像做预处理。包括图像灰度处理、线性增强处理和滤波处理。
(2)采用迭代阈值算法,通过实验达到分割效果。
(3)采用形态学图像处理,使用腐蚀算法和膨胀算法,连通域标记法获得目标结果。
为了解决以上难点,通过收集大量资料、整理文献,对已经发表的图像分割算法进行了学习理解,本文规划的技
术路线如图1.1所示。主要涉及到包括线性灰度变换、直方图处理、均值滤波器在内的空域图像增强算法,包括高斯
滤波器的频域图像增强算法,包括膨胀算法和腐蚀算法在内的形态学图像处理。在MATLAB平台上编译了图像分割处
理各步骤的程序,为图像分割的应用提供支撑技术,最后进行全文的总结。
根据本文规划的技术路线,论文主要结构分为以下五个章节:
第一章:绪论介绍部分为三个方面。①本文的选题背景。②图像分割技术发展历程和国内外的研究现状。③本篇
论文的主要内容、技术路线图以及每一章节内容概括。
第二章:说明图像分割基本原理以及3种常用的分割方法,并且对这3种算法进行具体的讨论,为图像分割的实现
提供理论依据。
第三章:MRI图像处理步骤详细的说明。主要介绍技术路线图的实现方法。确保在各个阶段都能合理地处理图
像。设置算法中变量属性、编写程序代码并运行程序。
第四章:比较图像分割程序处理原始MRI图像前后的效果图,并对效果进行分析说明。
第五章:论文的总结与后期学习的展望。
1.3.2 技术路线
2图像分割的基本原理
图像分割,简单来说,就是将一幅数字图像分割成不同的区域。在同一区域,在一定条件下可以认为是相同的
属性,如灰色、颜色、纹理等,而相邻区域的属性有明显的差异。图像分割在许多领域有着非常广泛的应用,涉及
到各种类型的图像。本章将详细介绍图像分割技术,包括边缘分割技术,阈值分割技术和区域分割技术。
图像分割是将数字图像分割成不同的区域。在同一区域中,在某些条件下,可以划分相同的属性,例如灰色、
颜色、纹理等,而相邻区域的属性却存在明显差异。图像分割在许多领域都有非常广泛的应用,涵盖了诸多不同类
型的图像。本章详细介绍了图像分割技术,包括边缘分割技术,阈值分割技术和区域分割技术。 [6]
2.1 图像分割技术介绍
图像分割是一个非常重要且困难的问题,贯穿于图像处理和人工智能等多个领域。图像分割是计算机视觉技术
中的关键步骤。影响计算机视觉中图像理解的重要因素是图像分割结果的好坏。
阈值分割技术是最简单的一种图像分割方法同时也是经典的图像分割方法之一。阈值分割算法的关键在于设置
适当的灰度阈值,一般来说,根据图像的灰度直方图来选取合适的阈值。算法的思想是用一个或几个阈值将图像的
灰度级分为几个部分,判断同一个部分的像素就被认为属于同一个物体。该算法可以极大的压缩工作量,而且也极
大的简化图像信息的分析和处理步骤。针对目标和背景处于不同灰度级范围的图像采用阈值分割技术非常有效。
2.2 全局阈值分割
当分割目标与背景的灰度差别明显时,可以用整个图像的全局阈值来分割图像。全局阈值分割算法的过程,如
下所示:
(1)为全局阈值
选择一个初始估计值。
(2)用
(3)对
分割该图像,这将产生两组像素:
由灰度值大于
的所有像素组成,G2由所有小于等于
的像素组成。
和G2的像素分别计算平均灰度值 和m2。
(4)计算一个新的阈值:
(5)重复步骤(2)到(4),直到连续迭代中的T值间的差小于一个预定义的参数 为止。
2.3 Otsu阈值分割
最大类间方差法又称为Otsu算法,是基于最小二乘法原理在灰度直方图上推导出来的,其基本原理是通过最优
阈值将图像的灰度值分成两部分,使两部分之间的方差最大,具有最大的分离度。[8]设
为图像
位置
处的灰度值,灰度级为L,则
。若灰度级i的所有像素个数为
,则第 级的灰度出现的
概率为:
其中
将图像中的像素按灰度级用阈值 划分为两类,即背景 和目标 .背景
和目标 对应的像素分别为:
的灰度级为
背景
的灰
度级为
。背景
背景 部分出现的概率为:
目标 部分出现的概率为:
背景 部分的平均灰度值为:
其中
目标 部分的平均灰度值为:
图像的总平均灰度值为:
图中的背景和目标的类间方差为:
令 的取值从
值。
变化,计算不同 值下的类间方差
,使得
最大时的那个 值就是所要求的最优阈
2.4 迭代式阈值分割
迭代阈值选择方法的基本思想是在开始时选择一个阈值作为初始估计,然后根据某种策略不断改进这个估计,
直到满足给定的准则。在迭代过程中,关键是选择使用什么样的阈值提升策略。一个好的阈值提升策略应该有两个
特点:一是快速收敛;第二,每次迭代过程中,新的生成阈值都比上一次好。
2.4.1 迭代式阈值分割的步骤
(1)设定参数 ,并选择一个初始的估计阈值 。
(2)用阈值 分割图像。将图像分成两部分: 是由灰度值大于 的像素组成, 是由灰度值小于或者等于 的
像素组成。
(3)计算 和 中所有的像素的平均灰度值
,以及新的阈值
。
(4)如果
,则推出, 即为最优阈值;否则,将 赋值于 ,并重复步骤2~4,直到获得最优阈值。
2.5 本章小结
本篇论文采用迭代阈值法进行实验。迭代阈值法是阈值法图像分割中综合效果比较好的方法,适用于MRI医学图
像处理。该算法通过迭代的方法来求出分割的最佳阈值,其优点是具有一定的自适应性。
3 图像的处理过程
图像分割是物体表达的基础,对特征测量有着重要的影响。通过图像分割和基于分割的目标表达、特征提取和
参数测量,将原始图像转化为更加抽象和紧凑的形式,使得对图像进行更高层次的识别、分析和理解成为可能。
3.1 图像预处理
空域内的图像增强就是调整灰度图像的明暗对比度,即直接处理图像中各像素点的灰度值。常用的方法有灰度
变换增强和直方图增强。
3.1.1 线性灰度变换增强
灰度变换增强是一种简单有效的空间图像增强方法。[9]灰度变换增强不改变像素在原始图像中的位置,只是逐
点改变像素的灰度值,与周围其他像素点无关。为了进行灰度变换,首先要得到图像的直方图。在MATLAB中,通过
编程可以得到灰度图像的直方图。[10]其结果如图3-1所示:
图3-1 灰度图像直方图
3.1.2 手动调整灰度范围
在MATLAB软件中,计算灰度图像灰度分布范围。程序运行后,输出结果如图3.1所示。图3.1左图为灰度图像,
右图为灰度图像的直方图。从直方图可以看出,灰度图像的灰度值主要集中在0~160之间,所以图像呈现模糊状态。
如果把灰度值在0160之间均匀分布到0255之间,图像会变得更清晰。同时,需要将大于160的灰度值赋值为255。
[11]
若设X为0~160之间的灰度值, Y为0~255之间的灰度值,则X
和Y满足如下公式:
将该公式化简,得到Y和x关系如下:
3.1.3 调整图像亮度
本步骤的目的是将调整灰度范围后的图像,进一步提高亮度,方便下一步观察与操作。
在MATLAB程序中,调整灰度图像的范围可以通过函数imadjus实现,将灰度值为
到
的灰度值
调整为0~255。通过参数gamma调整图像的亮度。如果gamma小于1,则亮颜色值的输出会增强[12]。其具体效果如图
3-3所示:
图3-3(a) 原始图像 图3-3(b)提高亮度的图像
3.1.3 二维中值滤波
顺序统计滤波包括中值滤波、最大滤波和最小
滤波。中值滤波可以很好地保留图像的边缘,非常适合去除椒盐噪声,比均值滤波效果更好。中值滤波的原理是设
坐标点
,大小为
的窗口表示为 ,中值滤波是选取窗口 中被干扰图像
的中值,作为坐标点
的输出,公式为:
最大滤波器也可以去除椒盐噪声,但它可以从黑色物体的边缘去除一些黑色像素。最大值滤波器的公式为:
最小值滤波器类似于最大值滤波器,但是一些白
色像素会被白色物体的边缘所删除。最小值滤波器的计算公式如下:
在MATLAB软件中,使用函数medFilt2对图像的二维中值进行滤波。在程
的窗口对图像进行二维中值滤波后得到图像,获得了非常好的效果。
序中,读取灰度图像,然后用大小为
[13]如图3-4所示。如果窗口太大,则会模糊图像的边缘。
图3-4(a) 原始图像 图3-4(b)二维中值滤波图像
3.2有效部分提取
采用形态学的腐蚀算法,目的是消除小且无意义的物体,使边界向内部收缩。为连通域标记算法的图像处理做
预处理。
采用高斯滤波器抑制腐蚀操作带来的噪声。
采用迭代式阈值分割法,分割得到二值图像。
采用连通域标记法,获得目标区域的图像。
采用膨胀算法,填充图像中的小孔和图像边缘的小凹陷。可以最大限度的还原MRI图像中的鸽脑形状。
3.2.1 图像腐蚀算法
数学形态学可以看作是一种特殊的数字图像处理方法和理论,在图像分析、计算机视觉等方面得到了广泛的应
用[13],主要研究图像的形态特征。它通过设计一整套操作、概念和算法来描述图像的基本特征。这些数学工具不
同于常用的频域或空域算法,而是基于微分几何和随机集理论。数学形态学是数字图像处理和识别的新理论和新方
法。它的理论虽然复杂,但基本思想简单而完善。
数学形态学的基础是集合论,腐蚀运算和膨胀运算是数学形态学的两个基本变换。参加运算的对象有两个图像
A (感兴趣目标)和结构集合B,B称为结构元素。结构元素通常是个圆盘,但它其实可以是任何形状。[14]
设A和B是 的子集,则把图像A沿矢量x平移一段距离记作
.其定义为:
结构元素B的映射为-B或 ,定义为:
A的补集记作
,定义为:
两个集合A和B的差集记作
,定义为:
对于两幅图像A和B,如果
,则称B击中A,记作
;否则,如果
,则称B击不中A。
腐蚀和膨胀是对偶性操作。腐蚀是消除边界点,使边界向内收缩的过程。使用腐蚀操作,可以消除小而无意义
的物体。[15]A组被结构元素B腐蚀,记为C,定义为:
3.2.2 高斯滤波器
由于图像经历过腐蚀算法,在消除小而无意义的部分,同时会产生噪声。所以使用高斯滤波器的目的是为了抑
制噪声。高斯滤波器是一种线性滤波器,可以有效地抑制噪声,平滑图像。[16]其工作原理是以滤波器窗口内像素
的平均值作为输出。高斯滤波器的模板系数随着与模板中心距离的增加而减小。[17]
3.2.3 迭代式阈值分割
在程序中,首先读入预处理后的灰度图像,通过while循环语句获得最佳的阈值。[18]在获得最佳的阈值参数
后,通过函数im2bw对图像进行分割。[19]程序运行后,输出结果如图3-5所示。3-5(b)是通过迭代方法获得最佳阈
值后获得的二值图像。[20]
图3-5(a) 形态学腐蚀处理后的图像 图3-5(b)迭代式阈值分割的图像
3.2.4 连通域标记法
图像的连通域标记法是用相同且唯一的标签来标注符合某种连通规则的像素。连通域标记法一直是数字图像处
理的一个重要研究方向,它的速度和精度直接影响后续的图像处理。[21]
经过迭代式阈值分割法处理后,MRI图像中的鸽脑部分已经趋于清晰,人眼可见呈现一团连通部分。本文采用连
通域标记法,采用MATLAB软件中的算法,提取图像中最大或最小部分,经过一次或多次操作,将图中的鸽脑部分提
取出来。MATLAB程序运行后,输出结果如图3-6所示。
图3-6(a) 形态学腐蚀处理后的图像 图3-6(b)迭代式阈值分割的图像
3.2.5 图像膨胀算法
采用膨胀算法对图像中的小孔和图像边缘的小凹陷进行填充。最大限度地还原鸽脑的原始图像。[22]
腐蚀和膨胀是对偶性的操作。膨胀是将与物体接触的所有背景点合并到物体中,并将边界向外扩展的过程。
[23]通过膨胀,可以填充图像中的小孔和图像边缘的小的凹陷部分。[24]结构元素B对图像A的膨胀,记作
定义为:
,
在MATLAB软件中,采用函数imdilate进行膨胀操作。
3.3 本章小结
本文首先要对图像做预处理,增强图像的特性。方便后期的算法分割。将迭代式分割算法与数学形态学相结
合,通过对图像多个步骤的处理,最后达到目的效果。
4 鸽脑MRI图像分割实验
4.1图像分割效果对比
(A1)MRI原始图像 (A2)MRI原始图像 (A3)MRI原始图像 (A4)MRI原始图像
(B1)灰度增强(B2)灰度增强(B3)灰度增强(B4)灰度增强
(C1)去除无意义部分(C2)去除无意义部分(C3)去除无意义部分(C4)去除无意义部分
(D1)本文算法分割 (D2)本文算法分割 (D3)本文算法分割 (D4)本文算法分割
(E1)提取连通域(E2)提取连通域(E3)提取连通域(E4)提取连通域
(F1)填充凹陷部分 (F2)填充凹陷部分 (F3)填充凹陷部分 (F4)填充凹陷部分
4.2关于图像分割的效果说明
鸽脑MRI图像不同于自然图像,大多数的鸽脑MRI图像都具有噪声点多、分辨率低、边界模糊、对比度低以及纹
理、灰度、光照不均匀等特点。[25]基于迭代阈值法处理鸽脑MRI图像,通过原始MRI图像与本论文算法处理后的图
像对比,多组人眼定性分析,基本达到了令人满意的效果。
因此本篇论文基于阈值分割的方法在处理鸽脑MRI图像。目标是分离出鸽脑MRI图像中的脑干部分,去掉脑壳和
其他不相干部分。目的是帮助医生快速准确的识别脑干形状,以便做下一步诊断。本文从医院公开数据库中选用4张
具有代表性的MRI图像,第1张图像展现部分视顶盖区域,第2、3、4张图像有完整的大脑和视顶盖区域。(A1)-
(F1)分别为原始MRI图像、对原始图像进行线性灰度增强、去除小而无意义的组织部分 、通过迭代式阈值法对图像
进行分割、去除外壳和其他组织、填充被腐蚀部分,并用多组人眼对目标区域分割进行评判。
总体来说,基于迭代式的阈值分割法,能够获得较为精准的结果。但是由于我缺乏公开的鸽脑MRI数据库信息,
不能做定性的分析,无法通过评价函数结合标准数据库得出具体的相似值。只能采用多组人眼对比的方式进行判
断。因此,对于鸽脑MRI图像分割的深入研究,我们需要与学校的附属医院或是社会上三级甲等以上级别的医院进行
合作获得MRI数据库样本.这样必将有助于图像处理课题的深入研究和发展。
5 总结与展望
本文对于图像分割处理,并没有完全依赖迭代式分割算法,而是与数学形态学相结合,通过对图像多个步骤的
处理,最后达到目的效果。
采用迭代式阈值分割算法,处理复杂的脑部核磁共振图像的分割问题,具有较好的效果。在分割过程中,图像
处理流程的规划是实现分割的关键。本文设计了一种融合线性灰度变换、二值化操作和滤波的图像预处理算法。根
据连通区域的面积,剔除无关区域,实现去壳,从而完成脑部MRI图像处理。采用本文提出的迭代阈值分割算法对目
标区域进行分割,并根据人眼对比度对算法的分割精度进行定性评价,证明迭代分割法能够达到较高的分割精度,
可以实现磁共振图像的成功分割。
在今后的研究中,我将思考对于已有图像分割算法的改进和搭建基于MATLAB的图像分割系统,使其更加精准且
智能化。
对于图像分割算法的改进是我比较感兴趣的方向,比如将粒子群优化算法与最大熵多阈值分割算法相结合,以
此来做鸽脑组织MRI图像的分割。或者是采用遗传算法结合最大熵阈值算法的图像分割算法研究等等。算法理论是有
限的,但是人们的智慧是无限的,通过对于算法的改进使计算机图像处理的效果更优化,是我选题的出发点和兴趣
所在。
本篇论文的另一个不足之处是步骤繁琐且不能实现智能化操作。今后的研究中,我打算使用MATLAB平台中的GUI
界面,做出基于M语言的图像分割算法实现软件。[26]该软件的作用是能够一键导入原始图像即可得到感兴趣的分割
后图像,帮助医疗工作者减轻工作难度,提高工作效率,帮助患者得到及时治疗。
致 谢
感谢杨德青老师对我的指导,不催促我交论文,缓解我的压力。给我足够的时间学习、写论文。
大四这一时期,我必须考虑自己今后的发展方向,需要去面对各种各样的考试和面试,也要额外学习更多的应
试知识,自己有很大的压力。在此期间,杨老师很照顾我们的感受,尽量不打扰我,不给我下达限期的硬性要求,
不增加我的压力,这使我可以更加专注于自己的目标。
感谢杜久玲老师的热心帮助。杜老师作为我大四的专业课老师,热心帮助我联系企业,介绍我去实习,如期完
成实习计划。正是杜老师的帮助,让我节省了大量时间去学习知识,实现自己的未来目标。
感谢现教中心的邵科圃老师和硬件组的小伙伴们,谢谢邵老师指导我前进的方向,教我人生经验;谢谢胜辉和
海锋,一起考证书、创社团。山水一程,幸甚至哉。
桃李不言,下自成蹊。借此机会,我向大学四年教导过我的所有老师们表达最真挚的感谢,老师们教会我的不
仅仅是专业知识还有接人待物的人生经验,让我受益终身,增强了我的专业素质,提高了道德品质,完善了人格发
展,催发了我思想成熟。这些都是我一生宝贵的财富。
感谢12#625我的五个好室友,对我的帮助和鼓励。谢谢江坤给我每年期末恶补知识,使我没有挂科经历。谢谢
许昌的旭明,每次返校都给我们带王洛镇大猪蹄,弹而香软,勾人馋虫。谢谢大阳,作为班长,一直以来配合我的
灵光小点子,搞活动做支持,出事有担当。谢谢童某人,一起去市区找美食、玩推理互动游戏,缓解我压力。谢谢
文涛,教我打篮球,一起吃烧烤。大学四年,诸君印象,深深印刻在我的心中。
感谢王广亚老先生创建学校,给我学习环境。天地虽宽不润无根之草,王老高风亮节,令人神往。