高压输电线故障检测数据集(YOLO标注格式)
该数据集包含10000多张高压输电线路图像,
标签类型: 正常高压线 故障高压线 正常绝缘子 故障绝缘子 正常阻尼器 故障阻尼器输电线塔
所有图像均已完成YOLO格式标注,并附带详细的TXT标注文件和YAML配置文件,方便直接使用
好的,让我们继续细化如何使用YOLOv5进行高压输电线故障检测,并确保数据集已经准备好,可以直接使用。
1. 数据集准备
1.1. 数据集结构
确保你的数据集按照以下结构组织:
high_voltage_detection/
│
├── images/
│ ├── train/
│ ├── val/
│ └── test/
│
├── labels/
│ ├── train/
│ ├── val/
│ └── test/
│
└── data.yaml
1.2. 创建数据配置文件 (data.yaml
)
train: ./high_voltage_detection/images/train
val: ./high_voltage_detection/images/val
test: ./high_voltage_detection/images/test
nc: 6 # 类别数量(6类)
names: ['normal_line', 'faulty_line', 'normal_insulator', 'faulty_insulator', 'normal_damper', 'faulty_damper'] # 类别名称
# 下载数据集
download: ''
2. 安装YOLOv5
确保你已经安装了YOLOv5。
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirements.txt
3. 训练模型
3.1. 配置训练
使用YOLOv5进行高压输电线故障检测。以下是一个示例命令:
python train.py --data ./high_voltage_detection/data.yaml --img 640 --batch 16 --epochs 100 --name yolov5_custom_high_voltage_detection --weights yolov5s.pt
4. 评估模型
4.1. 运行评估
在验证集上评估训练好的模型:
python val.py --data ./high_voltage_detection/data.yaml --weights runs/train/yolov5_custom_high_voltage_detection/weights/best.pt
4.2. 可视化结果
你可以使用val
命令的--save
标志来可视化结果:
python val.py --data ./high_voltage_detection/data.yaml --weights runs/train/yolov5_custom_high_voltage_detection/weights/best.pt --save
5. 示例代码
5.1. 数据预处理示例
import cv2
import os
def resize_images(input_dir, output_dir, size=(640, 640)):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for filename in os.listdir(input_dir):
if filename.endswith(('.jpg', '.png', '.jpeg')):
img_path = os.path.join(input_dir, filename)
img = cv2.imread(img_path)
img_resized = cv2.resize(img, size)
output_path = os.path.join(output_dir, filename)
cv2.imwrite(output_path, img_resized)
# 示例用法
resize_images('./high_voltage_detection/images/train', './high_voltage_detection/images/train_resized')
resize_images('./high_voltage_detection/images/val', './high_voltage_detection/images/val_resized')
resize_images('./high_voltage_detection/images/test', './high_voltage_detection/images/test_resized')
6. 运行和调试
确保你的环境配置正确,并且所有依赖项都已安装。运行模型训练和评估时,确保模型文件路径正确,并且数据集路径正确。