电气高压输电线类该——如何使用YOLOv5进行高压输电线故障检测, 高压输电线故障检测数据集,输电线故障数据集 包含10000多张 7类 YOLO格式

在这里插入图片描述
在这里插入图片描述
高压输电线故障检测数据集(YOLO标注格式)在这里插入图片描述

该数据集包含10000多张高压输电线路图像,

标签类型: 正常高压线 故障高压线 正常绝缘子 故障绝缘子 正常阻尼器 故障阻尼器输电线塔

所有图像均已完成YOLO格式标注,并附带详细的TXT标注文件和YAML配置文件,方便直接使用在这里插入图片描述
在这里插入图片描述
好的,让我们继续细化如何使用YOLOv5进行高压输电线故障检测,并确保数据集已经准备好,可以直接使用。

1. 数据集准备

1.1. 数据集结构

确保你的数据集按照以下结构组织:

high_voltage_detection/
│
├── images/
│   ├── train/
│   ├── val/
│   └── test/
│
├── labels/
│   ├── train/
│   ├── val/
│   └── test/
│
└── data.yaml
1.2. 创建数据配置文件 (data.yaml)
train: ./high_voltage_detection/images/train
val: ./high_voltage_detection/images/val
test: ./high_voltage_detection/images/test

nc: 6  # 类别数量(6类)
names: ['normal_line', 'faulty_line', 'normal_insulator', 'faulty_insulator', 'normal_damper', 'faulty_damper']  # 类别名称

# 下载数据集
download: ''

2. 安装YOLOv5

确保你已经安装了YOLOv5。

git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirements.txt

3. 训练模型

3.1. 配置训练

使用YOLOv5进行高压输电线故障检测。以下是一个示例命令:

python train.py --data ./high_voltage_detection/data.yaml --img 640 --batch 16 --epochs 100 --name yolov5_custom_high_voltage_detection --weights yolov5s.pt

4. 评估模型

4.1. 运行评估

在验证集上评估训练好的模型:

python val.py --data ./high_voltage_detection/data.yaml --weights runs/train/yolov5_custom_high_voltage_detection/weights/best.pt
4.2. 可视化结果

你可以使用val命令的--save标志来可视化结果:

python val.py --data ./high_voltage_detection/data.yaml --weights runs/train/yolov5_custom_high_voltage_detection/weights/best.pt --save

5. 示例代码

5.1. 数据预处理示例
import cv2
import os

def resize_images(input_dir, output_dir, size=(640, 640)):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    for filename in os.listdir(input_dir):
        if filename.endswith(('.jpg', '.png', '.jpeg')):
            img_path = os.path.join(input_dir, filename)
            img = cv2.imread(img_path)
            img_resized = cv2.resize(img, size)
            output_path = os.path.join(output_dir, filename)
            cv2.imwrite(output_path, img_resized)

# 示例用法
resize_images('./high_voltage_detection/images/train', './high_voltage_detection/images/train_resized')
resize_images('./high_voltage_detection/images/val', './high_voltage_detection/images/val_resized')
resize_images('./high_voltage_detection/images/test', './high_voltage_detection/images/test_resized')

6. 运行和调试

确保你的环境配置正确,并且所有依赖项都已安装。运行模型训练和评估时,确保模型文件路径正确,并且数据集路径正确。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值