# 模型效果和项目意义
从下图可以清楚的看到,提出的模型可以对人眼以及嘴巴进行描述。
最终的是对每个关节点进行了划分和表示。
意义在于可以识别人体姿态,例如车间危险动作,司机疲劳驾驶瞌睡提醒,校门口暴力动作预警
具体的:
视频监控:人体姿态估计可以用于视频监控系统中,通过识别和跟踪人体姿态,可以进行行为分析和异常检测,提高安全性和监控效率。
运动分析:人体姿态估计可以用于运动分析领域,如运动员的训练和比赛中,通过分析运动员的姿态和动作,可以提高技术水平和竞技成绩。
交互界面:人体姿态估计可以应用于交互界面,如虚拟现实、游戏等领域,用户可以通过手势和姿态来控制应用程序,提高用户体验。
医疗领域:人体姿态估计可以用于医疗领域,如康复训练、手术辅助等方面,通过分析患者的姿态和动作,可以对病情进行评估和治疗。
人机交互:人体姿态估计可以用于人机交互领域,如机器人控制、智能家居等方面,通过识别用户的姿态和动作,可以实现更自然、更智能的交互方式。
添加图片注释,不超过 140 字(可选)
# 前言
从视频中进行人体姿势估计在各种应用中都扮演着关键角色,例如量化身体锻炼、手语识别和全身手势控制。例如,它可以成为瑜伽、舞蹈和健身应用的基础。它还可以在增强现实中将数字内容和信息覆盖在物理世界之上。
# 模型介绍
提出的人体识别模型是一种高保真度的身体姿势跟踪机器学习解决方案,可以从RGB视频帧中推断出整个身体的33个3D标记和背景分割掩码,利用先前BlazePose研究,该研究还为ML Kit Pose Detection API提供支持。值得注意的是,目前最先进的方法主要依赖于强大的桌面环境进行推断,而我们的方法可以在大多数现代手机、桌面/笔记本电脑上实现实时性能,甚至在Python和Web上也可以使用可谓是功能十分强大!
# 算法介绍
这个解决方案利用了一种两步探测器-跟踪器机器学习流程,决方案中已经被证明是有效的。使用探测器,该流程首先定位帧内的人/姿势感兴趣区域(ROI)。然后,跟踪器使用ROI裁剪帧作为输入,在ROI内预测姿势标记和分割掩码。请注意,对于视频用例,只有在需要时才会调用探测器,即在第一帧和跟踪器无法在上一帧中识别身体姿势存在时。对于其他帧,该流程只需从上一帧的姿势标记中派生ROI。
# 算法代码
*核心代码部分* 顺便看下效果
添加图片注释,不超过 140 字(可选)
```python
with mp_pose.Pose(
#全部代码----->---------
static_image_mode=True,
model_complexity=2,
enable_segmentation=True,
min_detection_confidence=0.5) as pose:
for idx, file in enumerate(IMAGE_FILES):
image = cv2.imread(file)
image_height, image_width, _ = image.shape
# Convert the BGR image to RGB before processing.
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if not results.pose_landmarks:
continue
print(
f'Nose coordinates: ('
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].x * image_width}, '
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].y * image_height})'
)
```
# 算法结论和效果展示
该流程是作为一个e图实现的,它使用了姿势标记模块中的姿势标记子图,并使用专用的姿势渲染器子图进行渲染。姿势标记子图在内部使用了姿势检测模块中的姿势检测子图。
人体姿态识别是一项重要的计算机视觉任务,它涉及到从图像或视频中估计人体的关键点位置。这项技术广泛应用于动作捕捉、人机交互、运动分析等领域。对于毕业设计而言,选择这样一个课题既具有挑战性也非常有意义。以下是如何进行人体姿态识别项目的概述,包括理论基础、工具选择、实现步骤以及一些示例代码。
理论基础
- 关键点定义:人体姿态通常由一系列关键点表示,比如肩膀、肘部、手腕、髋关节等。
- 常用方法:
- 传统方法:基于手工设计的特征(如HOG)和机器学习算法(如SVM)。
- 深度学习方法:基于卷积神经网络(CNN),特别是专门为姿态估计设计的网络结构,如OpenPose、HRNet等。
工具选择
- 框架:PyTorch、TensorFlow等。
- 库:OpenCV用于图像处理,MediaPipe提供了简单易用的人体姿态估计API。
- 数据集:COCO、MPII、PoseTrack等。
实现步骤
- 环境搭建:安装必要的库和依赖项。
- 数据准备:下载并准备训练/测试数据集。
- 模型选择与训练:选择合适的模型架构,进行训练。
- 模型评估:在测试集上评估模型性能。
- 应用开发:开发一个简单的应用来展示模型的效果。
示例代码
这里我们使用MediaPipe来快速实现一个人体姿态估计的应用。MediaPipe提供了一个非常方便且高效的解决方案。
安装MediaPipe
首先确保安装了Python和pip,然后安装MediaPipe:
pip install mediapipe opencv-python
基本示例代码
import cv2
# 打开摄像头
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 转换颜色空间
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 处理帧
results = pose.process(image)
# 如果找到了姿态
if results.pose_landmarks:
# 绘制关键点和骨架连接
mp_drawing.draw_landmarks(
frame, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing.DrawingSpec(color=(245,117,66), thickness=⅔, circle_radius=4),
connection_drawing_spec=mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
)
# 显示图像
cv2.imshow('MediaPipe Pose', frame)
# 按q退出
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
这段代码展示了如何使用MediaPipe进行实时的人体姿态估计。您可以在此基础上添加更多的功能,比如保存关键点数据、分析特定动作等,以满足您的毕业设计需求。
深度学习模型训练
如果您希望深入研究并训练自己的姿态估计模型,可以考虑使用PyTorch或TensorFlow框架,配合如HRNet这样的先进模型结构。这需要更加复杂的设置和大量的计算资源。您可以在GitHub上找到许多开源项目作为参考。
希望这些信息对您的毕业设计有所帮助!如果有进一步的问题或者需要更详细的指导,请随时告诉我。