基于无信号交叉口的车辆行人数据分析软件
项目概述
本项目是一款基于无信号交叉口的车辆和行人数据分析软件,旨在通过交通数据分析,提供可视化展示与深度学习模型测试功能。通过软件,用户可以分析交通流量、行人轨迹等数据,并基于深度学习模型对数据进行训练与测试。该软件支持用户通过选择不同的数据集、查看热力图、进行数据分析以及调整模型参数等操作,便于研究者和交通管理部门高效地理解交通数据。
软件功能概述
-
首页展示:
- 登录后,软件默认呈现首页,首页包括视频展示区与交叉口相关运动对象轨迹的展示。用户可以直观查看视频和交叉口的运动轨迹。
-
菜单栏功能:
- 位于软件最上方,包含三个主要功能:主题选择、关于信息查看和退出程序。
- 主题选择:提供五种不同的主题色调,用户可以选择不同的颜色主题。
- 关于信息:提供软件介绍和版本信息查看,帮助用户了解软件功能和当前版本。
- 退出程序:点击退出选项可以关闭软件。
-
侧边栏导航:
- 侧边栏包含7个选项,用户通过点击选择不同功能,包括视频播放、数据导入、数据展示、数据分析等。
-
视频和运动轨迹展示:
- 用户可以选择视频文件,并在软件中播放。视频下方有进度条,用户可以控制播放进度,暂停与播放。
- 软件可同时展示交叉口运动对象的轨迹,帮助用户了解交通流态。
-
数据导入:
- 通过“数据集”选项卡,用户可以导入Excel或CSV格式的数据文件。导入的数据会展示在表格中,并显示相关的基本信息,如车辆数、车道位置等。
-
数据可视化展示:
- 导入数据后,用户可以查看全局数据分布,通过热力图和3D图表展示车辆、行人、电动车等不同类型的流量分布。
- 软件提供数据分类选择,可以查看不同类型交通对象的分布。
-
所选数据分布:
- 通过选择某一数据集,用户可以查看该数据集的热力分布图和3D柱状图,便于直观理解数据分布情况。
- 通过选择某一数据集,用户可以查看该数据集的热力分布图和3D柱状图,便于直观理解数据分布情况。
-
数据分析:
- 用户可以选择对数据进行统计分析,包括车辆类型、车流量、人流量等信息的可视化展示。
- 可通过柱状图、折线图、饼图等形式展示数据的统计结果。
- 针对不同时间段的车流、人流情况,用户可以选择不同的图表形式进行展示。
-
具体对象数据查询:
- 用户可以输入交通对象的ID进行查询,查看该对象在交叉口的详细信息,包括行走路径、速度、加速度等。
- 对于每个对象,软件提供行走轨迹、速度变化、加速度分析以及位置移动路径等图表展示。
-
基于PyTorch的深度学习模型训练与测试:
- 用户可以输入相关参数并训练深度学习模型,针对交叉口的数据进行测试。
- 训练过程中,软件会展示模型的收敛过程和效果,用户可以通过调整迭代次数、学习率等超参数来优化模型性能。
- 训练结果以折线图展示,直观显示训练过程中的损失值和精度。
项目部署与注意事项
-
部署:
- 本项目可以在Pycharm中打开,并通过配置虚拟环境(venv)来运行。通过执行以下命令安装项目所需的依赖:
pip install -r requirements.txt
- 本项目可以在Pycharm中打开,并通过配置虚拟环境(venv)来运行。通过执行以下命令安装项目所需的依赖:
-
数据集与效率:
- 数据集为demo级别,仅用于展示和测试,实际使用时可能会因数据量较大而导致程序运行效率低下,甚至可能会出现卡顿现象。
-
深度学习模块:
- 本项目中的深度学习模块参考了李沐老师的《动手学深度学习》课程,主要使用FashionMNIST数据集进行训练,旨在为用户提供基本的深度学习训练流程展示。
- 本项目中的深度学习模块参考了李沐老师的《动手学深度学习》课程,主要使用FashionMNIST数据集进行训练,旨在为用户提供基本的深度学习训练流程展示。
功能与使用流程
-
视频与轨迹展示:用户通过首页上的视频展示区域,可以选择视频文件并查看视频播放进度,同时在视频下方显示对应的轨迹图。用户可以暂停、继续播放视频,或拖动进度条。
-
数据导入:通过选择数据集功能,用户可导入Excel或CSV格式的数据。导入后,软件会自动解析并展示数据表格,同时提供数据集的基本信息。
-
数据可视化展示:软件会生成热力图和3D图表,显示不同类型交通对象的流量分布。用户可通过选择不同的数据类别(车辆、行人、电动车等)切换视图,帮助用户直观了解交通流态。
-
分析与查询功能:通过分析页面,用户可以查看所选数据集的统计分析图表,选择不同类型的图表展示(如柱状图、折线图、组合图等)。用户还可以查询具体对象(如某辆车或行人)的详细信息,查看其行走路径和速度变化等数据。
-
深度学习模型测试与训练:用户可以输入参数训练深度学习模型,并通过折线图查看模型的收敛情况。训练完成后,软件展示最终的训练精度和损失值,帮助用户评估模型表现。
总结
该软件为交通数据分析提供了一个直观的可视化界面,帮助用户理解和分析交叉口的交通流量、行人轨迹等信息。通过数据展示、统计分析以及深度学习模型的训练,用户可以全面评估交叉口的交通状况并作出优化决策。该软件在交叉口流量管理、交通安全监测等领域具有广泛的应用前景。