水下图像色彩校正与自适应对比度增强 + YOLO 目标检测(Python 实现)
📌 项目背景
- 原版算法基于 MATLAB(P-code 加密)
- 本仓库使用 Python 复现论文 80%+ 核心算法
- 新增功能:错误通道自动校正、可替代 LACE 的融合增强算法
- 网页端支持:在线处理图像(MLLE + 融合算法)👉
Underwater-image-color-correction
📚 相关论文 & 数据
- 论文 1:《Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement》
- 论文 2:《Color Balance and Fusion for Underwater Image Enhancement》
- MATLAB 源码参考:[MLLE]
- 测试数据集:[UIEB]
🎥 效果预览
- 图像增强对比图
- 视频处理演示 👉
⚙️ 环境配置
Python 3.12.9 ✅
pip install -r requirements.txt
- GPU 加速:如需 YOLO 目标检测加速,请安装 PyTorch GPU 版本
🛠 使用指南
-
输入文件
- 将待处理图片(
.jpg/.png
)或视频(.mp4
)放入Input
文件夹
- 将待处理图片(
-
模型选择
- 默认提供 海龟 & 海胆检测模型
- 自定义模型:修改
main.py
model = YOLO('your/model/path') # 替换为你的模型路径
- 命令行操作
- 基础模式(二选一):
python main.py --mode mlle # MLLE 色彩校正 python main.py -m fusion # LACC + 融合增强
- 高级模式(视频处理 + YOLO 检测 + 参数调节):
python main.py --type video --mode mlle --detect --beta 2 # 简写: python main.py -t vid -m mlle -d -b 2
- 基础模式(二选一):
📌 关键参数说明
参数 | 缩写 | 作用 | 示例值 |
---|---|---|---|
--mode | -m | 选择算法模式 | mlle / fusion |
--type | -t | 输入类型(图像/视频) | image / vid |
--detect | -d | 启用 YOLO 目标检测 | 无需赋值 |
--beta | -b | 对比度调节系数 | 1.0~3.0 |
💡 提示:视频处理需较高计算资源,建议 GPU 环境运行!