水下图像色彩校正与自适应对比度增强 + YOLO 目标检测与暗光增强(Python 实现)

水下图像色彩校正与自适应对比度增强 + YOLO 目标检测(Python 实现)

📌 项目背景

  • 原版算法基于 MATLAB(P-code 加密)
  • 本仓库使用 Python 复现论文 80%+ 核心算法
  • 新增功能:错误通道自动校正、可替代 LACE 的融合增强算法
  • 网页端支持:在线处理图像(MLLE + 融合算法)👉
    Underwater-image-color-correction

在这里插入图片描述

📚 相关论文 & 数据

  • 论文 1:《Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement》
  • 论文 2:《Color Balance and Fusion for Underwater Image Enhancement》
  • MATLAB 源码参考:[MLLE]
  • 测试数据集:[UIEB]

🎥 效果预览

  • 图像增强对比图
  • 视频处理演示 👉

在这里插入图片描述

⚙️ 环境配置

Python 3.12.9

pip install -r requirements.txt
  • GPU 加速:如需 YOLO 目标检测加速,请安装 PyTorch GPU 版本

🛠 使用指南

  1. 输入文件

    • 将待处理图片(.jpg/.png)或视频(.mp4)放入 Input 文件夹
  2. 模型选择

    • 默认提供 海龟 & 海胆检测模型
    • 自定义模型:修改 main.py
      model = YOLO('your/model/path')  # 替换为你的模型路径
      

在这里插入图片描述

  1. 命令行操作
    • 基础模式(二选一):
      python main.py --mode mlle      # MLLE 色彩校正
      python main.py -m fusion        # LACC + 融合增强
      
    • 高级模式(视频处理 + YOLO 检测 + 参数调节):
      python main.py --type video --mode mlle --detect --beta 2
      # 简写:
      python main.py -t vid -m mlle -d -b 2
      

在这里插入图片描述

📌 关键参数说明

参数缩写作用示例值
--mode-m选择算法模式mlle / fusion
--type-t输入类型(图像/视频)image / vid
--detect-d启用 YOLO 目标检测无需赋值
--beta-b对比度调节系数1.0~3.0

💡 提示:视频处理需较高计算资源,建议 GPU 环境运行!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值