基于 YOLOv8 和 OpenCV 的车道与车辆检测系统

基于 YOLOv8 和 OpenCV 的车道与车辆检测系统

概述

本项目演示了如何使用 YOLOv8(You Only Look Once)和 OpenCV 构建一个车道与车辆检测系统。该系统能够识别道路车道并检测车辆,同时估算车辆与摄像头的距离。它结合了计算机视觉技术和基于深度学习的目标检测,以提供对道路环境的全面理解。
在这里插入图片描述

主要功能

  • 车道检测:利用边缘检测和霍夫线变换(Hough Line Transformation)识别道路车道。
  • 车辆检测:使用 YOLOv8 检测车辆,并在其周围绘制边界框。
  • 距离估算:基于边界框大小,计算检测到的车辆与摄像头的距离。

安装步骤

  1. 安装依赖项
    pip install opencv-python-headless numpy ultralytics
    
  2. 运行 video.py 文件

工作原理

1. 车道检测流程

车道检测过程包括以下步骤:

步骤 1:设定感兴趣区域(ROI)

仅处理图像的下半部分(通常包含车道)。

def region_of_interest(img, vertices):
    mask = np.zeros_like(img)
    match_mask_color = 255
    cv2.fillPoly(mask, vertices, match_mask_color)
    masked_image = cv2.bitwise_and(img, mask)
    return masked_image
步骤 2:使用 Canny 边缘检测

将图像转换为灰度图,并应用 Canny 边缘检测以突出边缘。

gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
cannyed_image = cv2.Canny(gray_image, 100, 200)
步骤 3:霍夫线变换(Hough Line Transformation)

应用霍夫线变换检测代表车道的线段。

lines = cv2.HoughLinesP(
    cropped_image,
    rho=6,
    theta=np.pi / 60,
    threshold=160,
    lines=np.array([]),
    minLineLength=40,
    maxLineGap=25
)

2. 使用 YOLOv8 进行车辆检测

步骤 1:加载 YOLOv8 模型

使用预训练的 YOLOv8 模型检测每帧中的车辆。

from ultralytics import YOLO
model = YOLO('weights/yolov8n.pt')
步骤 2:绘制边界框

为每辆检测到的车辆绘制边界框,并显示类别(car)和置信度分数。

for box in boxes:
    x1, y1, x2, y2 = map(int, box.xyxy[0])
    conf = box.conf[0]
    if model.names[cls] == 'car' and conf >= 0.5:
        label = f'{model.names[cls]} {conf:.2f}'
        cv2.rectangle(lane_frame, (x1, y1), (x2, y2), (0, 255, 255), 2)
        cv2.putText(lane_frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 2)
距离估算

基于边界框大小估算车辆与摄像头的距离。

def estimate_distance(bbox_width, bbox_height):
    focal_length = 1000  # 示例焦距
    known_width = 2.0  # 车辆的近似宽度(单位:米)
    distance = (known_width * focal_length) / bbox_width
    return distance

3. 视频处理流程

将车道检测、车辆检测和距离估算整合到实时视频处理流程中。

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break
    lane_frame = pipeline(resized_frame)
    results = model(resized_frame)
    for result in results:
        # 绘制边界框并估算距离
    cv2.imshow('Lane and Car Detection', lane_frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

运行结果

该系统能够实时检测车道和车辆,显示检测到的车辆的边界框,并估算其与摄像头的距离。
在这里插入图片描述

结论

本项目展示了如何结合传统计算机视觉技术和深度学习来检测道路上的车道和车辆。通过将车道检测与基于 YOLOv8 的车辆检测相结合,我们可以更好地理解道路环境,并提供车辆距离等有价值的数据。


如果需要进一步优化或扩展功能(如多目标跟踪、3D 距离估计等),欢迎讨论! 🚗💨

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值