电梯按钮检测系统
项目概述
本项目旨在利用机器人摄像头采集的视频流,通过基于YOLOv10-S模型的目标检测技术,实现对电梯按钮(楼层数字、开门、关门、警报等)的实时检测与分类。
核心目标
- 精准识别:在机器人电梯导航过程中,实时检测视频图像中的各类电梯按钮。
- 模型优化:基于YOLOv10-S架构训练定制化目标检测模型。
技术方案
1. 数据集构建
-
数据来源:来自Roboflow的定制数据集
-
数据规模:
数据集类型 图像数量 训练集 14,012 验证集 405 测试集 202 -
标注类别:
- 楼层数字按钮
- 开门/关门按钮
- 警报按钮
- 其他常见电梯功能按钮
2. 图像预处理
为提升模型鲁棒性,采用以下增强策略:
- 色彩调整:适应不同光照条件
- 旋转与翻转:增强角度不变性
- 噪声注入:模拟真实场景干扰
3. 模型训练
- 基础模型:YOLOv10-S(轻量级高性能架构)
- 关键参数:
- 训练轮次:120 Epochs
- 批大小:16
- 输入分辨率:640×640
- 优化器:Adam
- 损失函数:交叉熵损失(YOLOv10优化版)
测试结果
检测效果示例
原始图像 | 检测结果 |
---|---|
![]() | |
![]() | |
![]() | |
![]() | |
![]() | |
![]() | |
视频演示
未来优化方向
-
光照适应性增强
- 针对低光/强反光场景优化检测精度
-
扩展应用场景
- 适配不同品牌/类型的电梯按钮布局
-
边缘计算部署
- 移植至Jetson等设备实现毫秒级实时检测
-
数据质量提升
- 补充高分辨率楼层数字按钮样本
- 优化数字区域的精细化标注
项目意义
本系统可广泛应用于:
- 服务机器人:自主电梯交互
- 无障碍设施:辅助视障人士操作电梯
- 智能楼宇:电梯状态监控与维护
通过持续迭代,该系统将推动机器人环境交互能力的标准化与实用化。