水果成熟度与病害检测系统
简介
欢迎使用水果成熟度与病害检测系统!本应用基于先进的Fruit-Ripeness-and-Disease-Detectio模型,可检测多种水果,并针对香蕉、芒果和石榴进行病害诊断。系统采用Flask框架开发,用户可上传图片进行分析,或通过实时视频流进行即时检测与诊断。
数据集
模型训练使用了以下专用数据集,可通过链接访问:
项目结构
项目目录结构如下:
Fruit-and-Disease-Detection/
│
├── templates/
│ ├── index.html # 主页
│ ├── fruit_detection.html # 水果检测页面
│ ├── disease_detection.html # 病害检测主页
│ ├── banana_detection.html # 香蕉病害检测
│ ├── mango_detection.html # 芒果病害检测
│ ├── pomogranate_detection.html # 石榴病害检测
│ ├── uploaded_image.html # 上传图片结果页
│
├── static/
│ ├── css/ # 样式文件
│ ├── js/ # 脚本文件
│ ├── images/ # 静态图片
│
├── app.py # Flask主程序
├── requirements.txt # 依赖库列表
└── README.md # 项目说明
安装指南
本地运行步骤如下:
2. **安装依赖**:
```bash
pip install -r requirements.txt
运行应用
启动Flask应用:
python app.py
在浏览器中访问:http://0.0.0.0:5000
。
功能特性
- 主页(路径
/
):提供系统功能导航入口。 - 水果检测(路径
/fruit_detection
):- 实时视频流检测:
/video_feed
- 图片上传分析接口:
/detect_objects
- 实时视频流检测:
- 病害检测:
- 主页面:
/disease_detection
- 香蕉病害:
/banana_detection
- 芒果病害:
/mango_detection
- 石榴病害:
/pomogranate_detection
- 主页面:
- 上传图片结果(路径
/uploads/<filename>
):显示检测结果与原始图片。
YOLO模型
系统使用以下预训练模型:
- 水果检测模型:
weights_3/best.pt
- 香蕉病害模型:
train2/weights/best.pt
- 芒果病害模型:
train/weights/best.pt
- 石榴病害模型:
train4/weights/best.pt
API接口
- 主页:
GET /
- 水果检测:
GET /fruit_detection
- 视频流:
GET /video_feed
- 目标检测:
POST /detect_objects
- 病害检测主入口:
GET /disease_detection
- 香蕉病害检测:
GET/POST /banana_detection
- 芒果病害检测:
GET/POST /mango_detection
- 石榴病害检测:
GET/POST /pomogranate_detection
- 图片结果:
GET /uploads/<filename>