水果成熟度与病害检测系统

水果成熟度与病害检测系统

简介

欢迎使用水果成熟度与病害检测系统!本应用基于先进的Fruit-Ripeness-and-Disease-Detectio模型,可检测多种水果,并针对香蕉、芒果和石榴进行病害诊断。系统采用Flask框架开发,用户可上传图片进行分析,或通过实时视频流进行即时检测与诊断。

数据集

模型训练使用了以下专用数据集,可通过链接访问:

在这里插入图片描述

在这里插入图片描述

项目结构

项目目录结构如下:

Fruit-and-Disease-Detection/  
│  
├── templates/  
│   ├── index.html                  # 主页  
│   ├── fruit_detection.html        # 水果检测页面  
│   ├── disease_detection.html      # 病害检测主页  
│   ├── banana_detection.html       # 香蕉病害检测  
│   ├── mango_detection.html        # 芒果病害检测  
│   ├── pomogranate_detection.html  # 石榴病害检测  
│   ├── uploaded_image.html         # 上传图片结果页  
│  
├── static/  
│   ├── css/                        # 样式文件  
│   ├── js/                         # 脚本文件  
│   ├── images/                     # 静态图片  
│  
├── app.py                          # Flask主程序  
├── requirements.txt                # 依赖库列表  
└── README.md                       # 项目说明  
安装指南

本地运行步骤如下:

2. **安装依赖**:  
```bash  
pip install -r requirements.txt  
运行应用

启动Flask应用:

python app.py  

在浏览器中访问:http://0.0.0.0:5000

功能特性
  • 主页(路径 /):提供系统功能导航入口。
  • 水果检测(路径 /fruit_detection):
    • 实时视频流检测:/video_feed
    • 图片上传分析接口:/detect_objects
  • 病害检测
    • 主页面:/disease_detection
    • 香蕉病害:/banana_detection
    • 芒果病害:/mango_detection
    • 石榴病害:/pomogranate_detection
  • 上传图片结果(路径 /uploads/<filename>):显示检测结果与原始图片。
YOLO模型

系统使用以下预训练模型:

  • 水果检测模型weights_3/best.pt
  • 香蕉病害模型train2/weights/best.pt
  • 芒果病害模型train/weights/best.pt
  • 石榴病害模型train4/weights/best.pt
API接口
  • 主页:GET /
  • 水果检测:GET /fruit_detection
  • 视频流:GET /video_feed
  • 目标检测:POST /detect_objects
  • 病害检测主入口:GET /disease_detection
  • 香蕉病害检测:GET/POST /banana_detection
  • 芒果病害检测:GET/POST /mango_detection
  • 石榴病害检测:GET/POST /pomogranate_detection
  • 图片结果:GET /uploads/<filename>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值