Yolo11n 鱼类灰度检测器
模型详情/概述
本模型基于YOLO11n架构开发,专用于黑白灰度水下影像中的鱼类检测。采用半无监督学习技术,无需依赖全标注数据集即可自主识别鱼类特征。
▌模型架构
架构类型:YOLO11n
任务类型:目标检测(鱼类识别)
影像类型:黑白灰度水下视频
检测类别:单类别(鱼类)
▌测试结果
(动态演示图示)
▌模型权重
可通过此链接获取
▌应用场景
· 黑白水下视频的实时检测
· 黑白水下影像的后处理分析
▌关键影响因素
· 无监督学习优势:适应非全标注数据集,擅长灰度影像特征提取
· 灰度影像专精:针对黑白水下环境优化检测性能
· 轻量架构:YOLO11n专为水下实时检测设计
· 训练数据:灰度水下数据集(80%训练集/20%验证集)
· 训练参数:50训练轮次/0.001学习率/416x416分辨率
▌性能指标(验证集)
精确率 | 召回率 | mAP50 | mAP50-95 |
---|---|---|---|
0.885 | 0.861 | 0.937 | 0.852 |
▌训练验证结果
· 训练/验证损失曲线
· 混淆矩阵
· 精确率-召回率曲线
· F1分数曲线
▌训练配置
权重文件:yolo11n_fish_trained.pt
训练轮次:50
学习率:0.001
批次大小:16
影像尺寸:416x416
▌训练数据
数据集:fish_dataset.zip(黑白水下影像)
数据划分:80%训练集 / 20%验证集
类别数量:单类别(鱼类)
学习方式:无监督学习(无需全量标注)
▌部署指南
使用方法:
from ultralytics import YOLO
model = YOLO("yolo11n_fish_trained.pt") # 加载模型
▌局限性说明
· 仅适配黑白水下影像,彩色素材或不同光照条件下性能可能下降
· 无监督学习可能导致噪声环境中误检(如将其他水下物体识别为鱼类)
· 复杂背景/遮挡/低分辨率影像会影响检测精度
▌注意事项
① 灰度专精性:对彩色水下素材泛化能力有限
② 无监督特性:灵活性高但可能增加误检风险
③ 伦理考量:
- 在新环境中可能存在检测偏差
- 关键任务需人工验证检测结果
- 用于海洋保护等敏感场景时需评估社会环境影响
(注:保留YOLO11n等技术术语原称,采用中文技术文档常见的"▌"符号作为分段标识,表格使用中文制表符,代码块保留英文格式。关键参数使用加粗强调,符合中文技术文档排版规范。)