基于卷积神经网络的Yolo11鱼类检测与跟踪

Yolo11n 鱼类灰度检测器

模型详情/概述

本模型基于YOLO11n架构开发,专用于黑白灰度水下影像中的鱼类检测。采用半无监督学习技术,无需依赖全标注数据集即可自主识别鱼类特征。
在这里插入图片描述

▌模型架构
架构类型:YOLO11n
任务类型:目标检测(鱼类识别)
影像类型:黑白灰度水下视频
检测类别:单类别(鱼类)
在这里插入图片描述

▌测试结果
(动态演示图示)
在这里插入图片描述

▌模型权重
可通过此链接获取

▌应用场景
· 黑白水下视频的实时检测
· 黑白水下影像的后处理分析

▌关键影响因素
· 无监督学习优势:适应非全标注数据集,擅长灰度影像特征提取
· 灰度影像专精:针对黑白水下环境优化检测性能
· 轻量架构:YOLO11n专为水下实时检测设计
· 训练数据:灰度水下数据集(80%训练集/20%验证集)
· 训练参数:50训练轮次/0.001学习率/416x416分辨率
在这里插入图片描述

▌性能指标(验证集)

精确率召回率mAP50mAP50-95
0.8850.8610.9370.852

▌训练验证结果
· 训练/验证损失曲线
· 混淆矩阵
· 精确率-召回率曲线
· F1分数曲线

▌训练配置
权重文件:yolo11n_fish_trained.pt
训练轮次:50
学习率:0.001
批次大小:16
影像尺寸:416x416

▌训练数据
数据集:fish_dataset.zip(黑白水下影像)
数据划分:80%训练集 / 20%验证集
类别数量:单类别(鱼类)
学习方式:无监督学习(无需全量标注)

▌部署指南
使用方法:

from ultralytics import YOLO
model = YOLO("yolo11n_fish_trained.pt")  # 加载模型

▌局限性说明
· 仅适配黑白水下影像,彩色素材或不同光照条件下性能可能下降
· 无监督学习可能导致噪声环境中误检(如将其他水下物体识别为鱼类)
· 复杂背景/遮挡/低分辨率影像会影响检测精度

▌注意事项
① 灰度专精性:对彩色水下素材泛化能力有限
② 无监督特性:灵活性高但可能增加误检风险
③ 伦理考量:

  • 在新环境中可能存在检测偏差
  • 关键任务需人工验证检测结果
  • 用于海洋保护等敏感场景时需评估社会环境影响

(注:保留YOLO11n等技术术语原称,采用中文技术文档常见的"▌"符号作为分段标识,表格使用中文制表符,代码块保留英文格式。关键参数使用加粗强调,符合中文技术文档排版规范。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值