pytorch yolo11深度学习海胆检测器

Yolo11x 海胆检测器

一、模型详情/概述

本模型基于YOLO11x架构训练,用于检测各类水下环境中的海胆。通过数据集训练,可在不同水下条件下精确定位海胆目标。
在这里插入图片描述

▌核心参数

  • 模型架构:YOLO11x
  • 任务类型:目标检测(海胆识别)
  • 影像类型:水下视频
  • 检测类别:单类别(海胆)
  • 模型下载:yolo11x_urchin_trained
    在这里插入图片描述

二、模型部署

1. 权重文件

支持多种格式:

  • PyTorch格式 (best.pt):原生PyTorch应用标准格式

2. 应用场景

  • 水下视频实时检测
  • 水下影像后处理分析

三、技术特性

在这里插入图片描述

1. 性能优势

  • 多源数据集:包含多角度海胆图像
  • 轻量架构:YOLO11x专为水下实时检测优化
  • 数据划分:70%训练集 / 20%验证集 / 10%测试集
  • 训练参数
    • 训练轮次:100
    • 学习率:0.001
    • 图像分辨率:640×640

2. 训练数据源

  • Orange-OpenSource Marine-Detect
  • Roboflow项目:
    • Sakana Urchins CJLib
    • Diad 3 Computer Vision Project

▌数据集规范

属性说明
许可协议CC BY 4.0
图像总量5000张
数据划分7:2:1(训练/验证/测试)

四、性能指标

验证集评估结果:

▌训练验证曲线

  • 训练损失 vs 验证损失曲线
    (注:此处保留原始技术术语如"YOLO11x",采用Markdown三级标题结构,关键数据使用表格呈现,重要参数加粗显示,符合中文技术文档规范)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值