深度学习图像增强扩充算法的道路障碍物检测

实验

1. 实验环境及步骤

实验环境配置

硬件配置软件配置
显卡:NVIDIA RTX A6000系统:Ubuntu 18.04(64位)
硬盘:SSD NVMe 86GBPython版本:3.8.0
内存:48GB RAM框架:Pytorch 1.10+cudnn8.0.5
处理器:Intel Xeon Platinum 8260C CPUCUDA:CUDA11.3

实验步骤

  1. 数据集增强
    对收集的数据进行增强处理以提高模型泛化能力。
  2. 评价指标确定
    通过定义评价指标分析实验数据。
  3. 模型训练及参数设置
    • 设置训练参数
    • 将数据集输入模型进行训练
    • 选择最优模型权重,通过检测脚本对道路障碍物图片进行分类预测

模型结构

  • YOLOv8 模型结构
    在这里插入图片描述
    改进的YOLO11结构图
    在这里插入图片描述

2. 数据集采集

  • 数据来源:通过 Roboflow 下载
  • 数据集规模:8000+ 张图像,包含 8 类目标
  • 数据示例
    在这里插入图片描述

类别分布

类别数量
类别11000
类别21200

3. 数据集预处理

采用 Mosaic 数据增强 技术,将四张图像拼接为新图像以提升模型鲁棒性。
在这里插入图片描述


4. 评价指标

4.1 计算公式

  • 精确率(Precision)
    P = T P T P + F P P = \frac{TP}{TP + FP} P=TP+FPTP
  • 召回率(Recall)
    R = T P T P + F N R = \frac{TP}{TP + FN} R=TP+FNTP
  • 平均精度(AP)
    A P = ∫ 0 1 P ( R )   d R AP = \int_{0}^{1} P(R) \, dR AP=01P(R)dR
  • 均值平均精度(mAP)
    m A P = 1 N ∑ i = 1 N A P i mAP = \frac{1}{N} \sum_{i=1}^{N} AP_i mAP=N1i=1NAPi

4.2 评价标准

  • IoU 阈值设为 0.5(即 AP@0.5)
  • mAP@0.5 反映模型整体性能

5. 结果对比

5.1 算法性能对比

算法输入尺寸模型大小(M)mAP@0.5训练速度(s/张)FPS
YOLOv8640×6405.3683.40.09856
YOLO11640×6405.9682.60.11052
改进的YOLO11640×6405.2183.70.11958

结论:改进的YOLO11在模型大小(5.21M)、mAP(83.7%)和FPS(58)上均表现最优。

5.2 训练曲线对比

  • YOLOv8 训练曲线
    )

  • YOLO11 训练曲线
    在这里插入图片描述

  • 改进的YOLO11 训练曲线
    在这里插入图片描述


6. 障碍物识别检测系统

检测效果对比

  • YOLOv8 检测结果

  • YOLO11 检测结果
    在这里插入图片描述

  • 改进的YOLO11 检测结果![

结论:改进模型对障碍物的置信度显著提高,验证了 Efficient 注意力机制和 CARAFE 算子的有效性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值